На правах рукописи

Ma

Меркулов Олег Владимирович

СТРУКТУРНЫЕ ОСОБЕННОСТИ, РАВНОВЕСИЕ ДЕФЕКТОВ, ИОННЫЙ И ЭЛЕКТРОННЫЙ ТРАНСПОРТ В СЛОЖНЫХ ОКСИДАХ НА ОСНОВЕ ФЕРРИТА СТРОНЦИЯ

02.00.21 – химия твердого тела

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2019

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте химии твердого тела Уральского отделения РАН

Научный руководитель:	доктор химических наук, главный научный сотрудник Патракеев Михаил Валентинович Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения РАН		
Официальные оппоненты:	Шляхтина Анна Викторовна, доктор химических наук, ведущий научный сотрудник, Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н. Семенова Российской Академии Наук.		
	Путилов Лев Петрович, кандидат химических наук, научный сотрудник, Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения РАН		
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова»		

Защита состоится 4 апреля 2019 г. в 12:00 на заседании диссертационного совета Д 004.004.01 на базе ФГБУН Института химии твердого тела УрО РАН по адресу: ул. Первомайская, 91, г. Екатеринбург, 620990.

С диссертацией можно ознакомиться в Центральной научной библиотеке Уральского отделения РАН и на сайте ИХТТ УрО РАН: http://www.ihim.uran.ru.

Автореферат разослан « » февраля 2019 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Ашер Дьячкова Т.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Сложные оксиды, обладающие смешанной кислородионной и электронной проводимостью, в настоящее время являются объектами активных исследований. Интерес к данным оксидам связан с перспективами их применения в качестве материалов кислородных мембран, электродов твердооксидных топливных элементов (ТОТЭ), кислородных аккумуляторов и катализаторов окисления. Для использования в указанных электрохимических приложениях к смешанным проводникам предъявляется ряд требований, наиболее важным из которых является высокая ионная и электронная проводимость.

Наилучшее соотношение ионной электронной И проводимости реализуется в сложных оксидах переходных металлов со структурой перовскита АВО₃₋₆, где А – щелочноземельный или редкоземельный элемент, или их комбинация, а В – переходный металл. Электронная проводимость в таких оксидах обеспечивается переменной степенью окисления В-катиона, а наличие вакансий в анионной подрешетке создает условия для кислородного транспорта. Модификацию перовскитоподобных оксидов выполняют путем частичного замещения катионов в А- или В-подрешетках, что позволяет получить новые материалы с измененными функциональными свойствами. Однако свойства оксидов со смешанной проводимостью взаимосвязаны, поэтому целенаправленное изменение одной выбранной характеристики невозможно. Соответственно, материаловедческая задача сводится к тому, чтобы обеспечить оптимальный баланс функциональных параметров с учетом корреляций между составом, структурой, термомеханическими, термодинамическими и транспортными свойствами.

В настоящее время известно большое количество исследований физико-химических свойств перовскитоподобных оксидов на основе феррита стронция SrFeO_{3-б}. Высокий уровень смешанной проводимости и хорошая стабильность в восстановительных условиях позволяют рассматривать данный оксид в качестве перспективной основы для разработки новых функциональных материалов. Несмотря на значительный прогресс, достигнутый в последнее время в изучении и интерпретации свойств смешанных проводников на основе феррита стронция, ряд важных проблем остается нерешенным. В частности, серьезным недостатком феррита стронция является упорядочение кислородных вакансий, способное привести к значительному снижению кислород-ионной проводимости. Поэтому изучение механизмов стабилизации высокой симметрии кристаллической решетки является актуальной задачей. Анализ литературы показывает, что

результатов измерений электропроводности, полученных описание В окислительных и восстановительных условиях, выполняется, как правило, с использованием различных, порой противоречащих друг другу, подходов. Поэтому разработка единой модели для анализа транспортных свойств ферритов в широком интервале активности кислорода является важной нерешенной задачей. Значительный интерес с точки зрения потенциального применения В электрохимических технологиях представляют перовскитоподобные оксиды, содержащие два элемента с переменной степенью окисления. Это требует развития подходов к описанию равновесия дефектов в оксидах с двумя электроактивными элементами. Кроме того, перовскитоподобные ферриты являются удобными модельными объектами, на примере которых могут быть вскрыты фундаментальные взаимосвязи, определяющие эксплуатационные свойства функциональных материалов в электрохимических устройствах.

Таким образом, исследование физико-химических свойств В зависимости от химического состава оксидов на основе феррита стронция как с практической, важной задачей, $SrFeO_{3-\delta}$ является так И С фундаментальной точки зрения. Актуальность проблематики работы подтверждается тем, что отдельные ее этапы были поддержаны Российским Фондом Фундаментальных Исследований (проекты № 13-03-00931, № 13-08–96060 и № 17–08–01029).

Цель работы - установление влияния природы и концентрации замещающих элементов на структуру, кислородную нестехиометрию, термодинамические и транспортные характеристики оксидов $SrFe_{1-x}M_xO_{3-\delta}$ (M = Mo, Sn, Si).

Для достижения поставленной цели решались следующие задачи:

• Синтез оксидов SrFe_{1-x} $M_xO_{3-\delta}$ (M = Mo, Sn, Si), получение однофазных керамических образцов.

• Изучение влияния концентрации замещающих элементов на структурные свойства материалов в окислительных и восстановительных условиях.

• Измерение электропроводности оксидов в зависимости от парциального давления кислорода и температуры, определение парциальных вкладов ионов кислорода, электронов и дырок в электропроводность.

• Измерения кислородной нестехиометрии ферритов в зависимости от парциального давления кислорода и температуры.

• Определение констант равновесия реакций образования ионных и электронных дефектов на основе термодинамического моделирования равновесия сложных оксидов с кислородом газовой фазы.

• Расчет концентрации и подвижности носителей заряда, анализ влияния дефектной структуры оксидов на их транспортные свойства.

Научная новизна.

• Уточнены пределы растворимости Si и Mo в феррите стронция при проведении синтеза в атмосфере воздуха.

• Впервые получены зависимости содержания кислорода и электропроводности от температуры и парциального давления кислорода для оксидов $SrFe_{1-x}Mo_xO_{3-\delta}$ (0.07 $\leq x \leq 0.3$), $SrFe_{1-x}Si_xO_{3-\delta}$ (0.05 $\leq x \leq 0.2$) и $SrFe_{1-x}Sn_xO_{3-\delta}$ (0.05 $\leq x \leq 0.25$).

• Предложена термодинамическая модель дефектной структуры $SrFe_{1-x}Mo_xO_{3-\delta}$, учитывающая помимо реакций окисления и диспропорционирования железа, также и реакцию электронного обмена между катионами железа и молибдена, позволяющая хорошо описать экспериментальные зависимости p_{0x} – $T-\delta$.

• Выполнен количественный дефектной структуры анализ оксидов $SrFe_{1-r}Mo_rO_{3-\delta}$ $(0.07 \le x \le 0.25),$ $SrFe_{1-x}Si_xO_{3-\delta}$ $(0.05 \le x \le 0.15)$ И $(0.05 \le x \le 0.17),$ определены константы равновесия $SrFe_{1-x}Sn_xO_{3-\delta}$ И термодинамические параметры реакций дефектообразования.

• Впервые предложена модель описания проводимости ферритов в широком интервале парциальных давлений кислорода с использованием данных по кислородной нестехиометрии.

• Рассчитана подвижность электронных носителей заряда в зависимости от температуры и содержания кислорода в сложных оксидах $SrFe_{1-x}Mo_xO_{3-\delta}$ (0.07 $\leq x \leq 0.25$), $SrFe_{1-x}Sn_xO_{3-\delta}$ (0.05 $\leq x \leq 0.17$) и $SrFe_{1-x}Si_xO_{3-\delta}$ (0.05 $\leq x \leq 0.15$), оценены энергии активации электронной и ионной проводимости оксидов.

• Установлены возможные кислородные координации катионов В-подрешетки в сложных оксидах $SrFe_{1-x}Mo_xO_{3-\delta}$ (0.07 $\leq x \leq$ 0.25) и $SrFe_{1-x}Si_xO_{3-\delta}$ (0.05 $\leq x \leq$ 0.25). Показано, что при концентрации кремния x > 0.10 в $SrFe_{1-x}Si_xO_{3-\delta}$ формируются кластеры, состоящие из тетраэдров кремния с общей кислородной вакансией.

• Установлен механизм влияния концентрации молибдена на электронную проводимость $SrFe_{1-x}Mo_xO_{3-\delta}$. Оксиды данной серии проявляют свойства композитов, состоящих из упорядоченных наноразмерных областей двойного перовскита Sr_2FeMoO_6 с высокой электронной подвижностью, диспергированных в разупорядоченной перовскитной матрице с низкой подвижностью электронов. Увеличение концентрации молибдена выше

x ~ 0.3 сопровождается резким увеличением электронной проводимости, что объясняется эффектом перколяции.

Практическая значимость работы.

В работе получен обширный справочный материал. Измерены зависимости $p_{O_2} - T - \delta$ и $p_{O_2} - T - \sigma$ исследованных сложных оксидов, определены структурные особенности, исследованы высокотемпературные термодинамические и электрофизические свойства. Результаты работы могут быть использованы при разработке новых оксидных материалов с заданными свойствами и оценки их возможного применения в электрохимических устройствах.

Показано, что, несмотря на рекомендации ранее опубликованных работ, использование оксидов $SrFe_{1-x}Si_xO_{3-\delta}$ в качестве электродов ТОТЭ нецелесообразно, поскольку введение кремния приводит к резкому снижению ионной проводимости, а также оказывает неблагоприятное влияние на электронную и дырочную проводимость.

Замещение оловом в оксидах $SrFe_{1-x}Sn_xO_{3-\delta}$ обеспечивает стабильность кристаллической структуры в восстановительных условиях, что позволяет поддерживать относительно высокий уровень смешанной проводимости в широком диапазоне парциального давления кислорода.

Установлено, что электропроводность керамики SrFe_{0.7}Mo_{0.3}O_{3- δ} в восстановительных условиях достигает ~ 40 См/см при 950 °C, поэтому данный материала может быть рекомендован для тестирования в качестве анодного материала твердооксидных топливных элементов. Важное практическое значение имеет установление перколяционного характера электронной проводимости в SrFe_{1-x}Mo_xO_{3- δ}. Для анодных материалов на основе оксидов этой серии целесообразно брать содержание молибдена чуть выше порога перколяции. Это обеспечит оптимальный баланс высокой электронной проводимости и стабильности материала.

Основные положения, выносимые на защиту.

• Структурные особенности сложных оксидов SrFe_{1-x}Mo_xO_{3- δ} (0.07 $\leq x \leq$ 0.3), SrFe_{1-x}Si_xO_{3- δ} (0.05 $\leq x \leq$ 0.3) и SrFe_{1-x}Sn_xO_{3- δ} (0.05 $\leq x \leq$ 0.25), полученных в окислительных и восстановительных условиях.

• Зависимости кислородной нестехиометрии и электропроводности от температуры и парциального давления кислорода для оксидов SrFe_{1-x}Mo_xO_{3- δ} (0.07 \leq x \leq 0.3), SrFe_{1-x}Si_xO_{3- δ} (0.05 \leq x \leq 0.2) и SrFe_{1-x}Sn_xO_{3- δ} (0.05 \leq x \leq 0.2).

• Закономерности электронного и ионного транспорта в твердых растворах $SrFe_{1-x}Mo_xO_{3-\delta}$ (0.07 $\leq x \leq 0.3$), $SrFe_{1-x}Sn_xO_{3-\delta}$ (0.05 $\leq x \leq 0.17$) и $SrFe_{1-x}Si_xO_{3-\delta}$ (0.05 $\leq x \leq 0.15$).

• Термодинамические характеристики твердых растворов $SrFe_{1-x}Mo_xO_{3-\delta}$ (0.07 $\leq x \leq 0.25$), $SrFe_{1-x}Si_xO_{3-\delta}$ (0.05 $\leq x \leq 0.15$) и $SrFe_{1-x}Sn_xO_{3-\delta}$ (0.05 $\leq x \leq 0.17$).

• Равновесие дефектов в твердых растворах $SrFe_{1-x}Mo_xO_{3-\delta}$ (0.07 $\leq x \leq$ 0.25), $SrFe_{1-x}Si_xO_{3-\delta}$ (0.05 $\leq x \leq$ 0.15) и $SrFe_{1-x}Sn_xO_{3-\delta}$ (0.05 $\leq x \leq$ 0.17)

Личный вклад соискателя.

В основу диссертации положены результаты научных исследований, выполненных непосредственно автором в лаборатории «оксидных систем» Института химии твердого тела Уральского отделения РАН. Личный вклад автора состоит в проведении синтеза материалов, выполнении измерений их кислородной нестехиометрии и электропроводности, обработке, анализе и обобщении полученных данных.

Постановка задач, обсуждение методологических и теоретических вопросов, а также интерпретация результатов и подготовка публикаций выполнялись совместно с научным руководителем.

Отдельные экспериментальные теоретические исследования И соавторами опубликованных выполнены статей. Просвечивающая электронная микроскопия проведена д.ф-м.н. Шалаевой Е.В. Атомистическое моделирование проводилось автором совместно с PhD Naumovich E.N. (Institute of Power Engineering, Warsaw, Poland). Рентгеноструктурный анализ материала $SrFe_{0.7}Mo_{0.3}O_{3-\delta}$ выполнен К.Х.Н. Тютюнником А.П. Мессбауэровская спектроскопия проводилась PhD Ципис E.B. и PhD Waerenborgh J.C. (University of Aveiro, Aveiro, Portugal).

Апробация работы.

Основные результаты исследований, выполненных в рамках настоящей работы, представлены на следующих российских и международных научных конференциях: 9-ый семинар СО – УрО РАН «Термодинамика И Материаловедение» (2014 г., г. Новосибирск), Вторая Международная молодежная научная конференция "Физика. Технологии. Инновации ФТИ-2015" (2015 г., г. Екатеринбург), IX International conference of young scientists on chemistry "Mendeleev-2015" (2015 г., г. Санкт-Петербург), Молодежная школа "ХИМИЯ XXI ВЕКА", (2015 г., г. Екатеринбург), Международная школа-конференция студентов, аспирантов молодых ученых И "Биомедицина, материалы и технологии XXI века" (2015 г., г. Казань), Менделеевский съезд по общей и прикладной химии (2016 г., г. Екатеринбург), 21st International Conference on Solid State Ionics (SSI-21), (2017г., Padova, Italia), Всероссийская конференция с международным участием «Химия твердого тела и функциональные материалы» и 12-й Всероссийский симпозиум с международным участием «Термодинамика и материаловедение» (2018 г., г. Санкт-Петербург).

Публикации.

По материалам диссертации опубликовано 6 статей в международных научных журналах и 8 тезисов докладов на всероссийских и международных конференциях.

Структура диссертации.

Диссертация состоит из введения, 6 глав, выводов и списка цитируемой литературы. Работа изложена на 166 страницах, включая 65 рисунков, 22 таблицы и список литературы из 158 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи работы, показана научная новизна и практическая значимость результатов. Представлены основные положения, выносимые на защиту.

Первая глава посвящена литературному обзору и состоит из двух разделов. В первом разделе представлены основные данные по структурным особенностям, фазовым соотношениям, кислородной нестехиометрии и электропроводности перовскитоподобного оксида SrFeO_{3-б}. Второй раздел посвящен анализу имеющихся литературных данных по физико-химическим свойствам и применению оксидов SrFe_{1-x} $M_xO_{3-\delta}$ (M = Si, Sn, Mo). Показано, что объекты исследования являются перспективными материалами кислородпроводящих мембран и электродов ТОТЭ. Однако в литературе практически нет информации о влиянии обозначенных допантов на кислородную нестехиометрию и дефектную структуру оксидов. Данные, касающиеся кристаллической структуры и электропроводности твердых растворов, являются неполными и противоречивыми. Обозначены основные векторы исследований физико-химических свойств перовскитоподобных ферритов стронция, допированных кремнием, оловом и молибденом.

Во второй главе приведены методики синтеза и описаны основные методы исследования сложных оксидов $SrFe_{1-x}M_xO_{3-\delta}$ (M = Si, Sn, Mo).

<u>Синтез исследуемых соединений.</u> Оксиды SrFe_{1-x}Si_xO_{3- δ} и SrFe_{1-x}Sn_xO_{3- δ} получены методом твердофазного синтеза. Оксиды серии SrFe_{1-x}Mo_xO_{3- δ} синтезированы глицин–нитратным методом. В качестве исходных реактивов использовались следующие соединения: Fe₂O₃, Fe (карбонильное железо), SrCO₃, SnO₂, MoO₃, SiO₂. Отжиг проводился в температурном интервале 1300–1420 °C.

Рентгеновская дифракция. Фазовый и структурный анализ проводился при помощи дифрактометров X'pert Pro MPD (Panalytical diffractometer), Shimadzu и STADI-P (STOE). Анализ рентгенограмм и расчет параметров структуры проводился методом Ритвельда с использованием программного обеспечения PCW 2.4.

<u>Просвечивающая электронная микроскопия</u> (ПЭМ) применялась с целью уточнения локальной структуры образцов. Изображения ПЭМ и электронной дифракции получали при помощи устройств JEM-200CX и Philips CM-30. Программное обеспечение CaRIne Crystallography 4.0 использовалось для симуляции данных электронной дифракции.

<u>Мёссбауэровская спектроскопия.</u> Мессбауэровские спектры записывались при комнатной температуре с использованием традиционного спектрометра с постоянной скоростью, снабженного 25 mCi ⁵⁷Co (Rh) источником излучения.

<u>Термогравиметрический анализ.</u> Относительное изменение веса оксидов при нагревании определялись методом термогравиметрического анализа с помощью термоанализатора Setaram TG–92. Измерения проводились в атмосфере воздуха, для анализа использовался массив данных, полученный при охлаждении.

<u>Дилатометрический анализ.</u> Относительное удлинение образцов при изменении температуры измерялось с помощью дилатометра LINSEIS L75/1250 в интервале температур 25–1000 °C в атмосфере воздуха.

Кулонометрическое титрование. Содержание кислорода в оксидах в зависимости от температуры (T) и парциального давления (p_{O_2}) кислорода в фазе измерялось методом кулонометрического газовой титрования. Подробное описание устройства и методики эксперимента изложено в работе [1]. Эксперименты были проведены двойной С использованием электрохимической ячейки из стабилизированного диоксида циркония, обеспечивающей высокую точность определения содержания кислорода в оксиде $\Delta \delta = \pm 0.002$.

<u>Измерение электропроводности.</u> Электропроводность оксидов в зависимости от температуры и парциального давления кислорода измерялась четырех–зондовым методом на постоянном токе с использованием

электрохимической ячейки из стабилизированного диоксида циркония. Техника эксперимента описана в работе [2]. Погрешность измерения удельной электропроводности не превышала 2 %, и обусловлена в основном ошибкой измерений геометрических размеров образца.

Третья глава посвящена моделированию дефектной и кристаллической структур оксидов. В экспериментальных интервалах температур и парциальных давлений кислорода, используемых в работе, катионы железа могут иметь степень окисления 2+, 3+ и 4+. Катионы кремния и олова в этих условиях обладают неизменной степенью окисления 4+, а катионы молибдена могут иметь степень окисления 5+ и 6+. Основной вклад в образование ионных и электронных дефектов в нестехиометрических ферритах вносят процессы окисления железа

$$2Fe^{3+} + V_0 + \frac{1}{2}O_2 = 2Fe^{4+} + O^{2-}$$
(1)

и зарядового диспропорционирования на ионах железа.

$$2Fe^{3+} = Fe^{4+} + Fe^{2+}$$
(2).

Вводя обозначения *p*, *a* и *n* для концентраций ионов железа Fe^{4+} , Fe^{3+} и Fe^{2+} в феррите, соответственно, и обозначая концентрацию кислородных вакансий V_0 как δ , можно записать константы равновесия реакций (1) и (2) в виде:

$$K_{\rm ox} = \frac{\left[{\rm Fe}^{4+}\right]^2 \cdot \left[{\rm O}^{2-}\right]}{\left[{\rm Fe}^{3+}\right]^2 \cdot \left[{\rm V}_{\rm O}\right]} p_{{\rm O}_2}^{-1/2} = \frac{p^2 \cdot (3-\delta)}{a^2 \cdot \delta} p_{{\rm O}_2}^{-1/2}$$
(3)

$$K_{\rm d} = \frac{\left[\mathrm{Fe}^{2+}\right] \cdot \left[\mathrm{Fe}^{4+}\right]}{\left[\mathrm{Fe}^{3+}\right]^2} = \frac{n \cdot p}{a^2}$$
(4).

Все константы равновесия могут быть выражены через соответствующие термодинамические функции:

$$K_{\rm j} = \exp\left(-\frac{\Delta G_{\rm j}^0}{RT}\right) = \exp\left(-\frac{\Delta H_{\rm j}^0 - T\Delta S_{\rm j}^0}{RT}\right)$$
(5),

где R – универсальная газовая постоянная; ΔG_j^0 , ΔH_j^0 и S_j^0 – стандартные энергия Гиббса, энтальпия и энтропия реакций, соответственно. Химическая формула оксидов SrFe_{1-x}Sn_xO_{3- δ} и SrFe_{1-x}Si_xO_{3- δ}, с учетом зарядов и концентраций ионов и вакансий кислорода, может быть представлена в виде Sr²⁺Fe²⁺_nFe³⁺_aFe⁴⁺_pM_xO²⁻_{3- δ} (M = Sn⁴⁺, Si⁴⁺). При моделировании дефектной структуры оксидов, также, учитывались уравнение материального баланса и условие электронейтральности:

$$a+n+p+x=1\tag{6}$$

$$n = 2\delta - 1 + x + p \tag{7}$$

Решение системы уравнений (4), (6) и (7) позволяет установить зависимость между кислородной нестехиометрией, концентрациями ионов железа и содержанием допанта:

$$p = \frac{4K_{\rm d} - 8\delta K_{\rm d} + 2\delta - 4xK_{\rm d} + x - D}{8K_{\rm d} - 2}$$
(8);

$$n = 2\delta - 1 + x + p;$$
 $a = 1 - n - p - x$ (9),

где $D = \sqrt{4K_d - 16\delta xK_d + 4\delta x + x^2 + 4\delta^2 - 4x^2K_d - 16\delta^2K_d}$. Взаимосвязь кислородной нестехиометрии и парциального давления кислорода над образцом выражается как:

$$p_{O_2} = \left(\frac{p^2 \cdot (3-\delta)}{a^2 \cdot \delta \cdot K_{ox}}\right)^2 = \left(\frac{p^2 \cdot [O_m^{2-}]}{a^2 \cdot [V_{O_{av}}] \cdot K_{ox}}\right)^2$$
(10).

При моделировании дефектной структуры оксидов с молибденом учитывался процесс электронного обмена между ионами железа и молибдена:

$$Fe^{3+} + Mo^{5+} = Fe^{2+} + Mo^{6+}$$
(11)

$$K_{\rm e} = \frac{\left[\mathrm{Fe}^{2+}\right] \cdot \left[\mathrm{Mo}^{6+}\right]}{\left[\mathrm{Fe}^{3+}\right] \cdot \left[\mathrm{Mo}^{5+}\right]} = \frac{n_{\rm Fe} \cdot b}{a \cdot n_{\rm Mo}}$$
(12).

С учетом сильной связи между ионами молибдена и кислорода, рассмотрено две модели описания зависимостей равновесного содержания кислорода в образцах. Модель 1 предполагала, что все кислородные позиции в оксидах равнозначны и ионы кислорода, с одинаковой вероятностью, участвуют в обмене с газовой фазой. Модель 2 основывалась на том, что ионы кислорода из ближайшего окружения молибдена не участвуют в процессе обмена с газовой средой.

Расчеты дефектной структуры проводились при помощи программного обеспечения SigmaPlot V11 и MathCad.

Атомистическое компьютерное моделирование оксидных систем выполнено для независимой оценки предпочтительного расположения кислородных вакансий. Моделирование проводилось при помощи программного обеспечения GULP, основанного на феноменологической модели Бекингема для межатомных взаимодействий [3].

Четвертая глава содержит результаты исследования структуры, кислородной нестехиометрии и транспортных свойств SrFe_{1-x}Si_xO_{3-δ}.

Результаты рентгеновской дифракции показали, что синтезированные на воздухе оксиды SrFe_{1-x}Si_xO_{3- δ} (0.05 \leq x \leq 0.25) являются однофазными и имеют структуру кубического перовскита (пр. гр. Рт3т). Повышение содержания кремния в феррите до x = 0.3 приводит к появлению на дифрактограмме дополнительных рефлексов. принадлежащих фазе ортосиликата стронция Sr₂SiO₄ с орторомбической структурой (пр. гр. *Pnma*). Согласно оценкам, максимальная растворимость кремния составляет 25%. После восстановительной обработки при 950 °C в газовой среде с p_{O_2} ~ 10^{-12} атм в $SrFe_{0.95}Si_{0.05}O_{3-\delta_{7}}$ оксиде наряду с перовскитной фазой, обнаруживается фаза браунмиллерита Sr₂(Fe,Si)₂O₅ (пр. гр. *Ibm*2), рис. 1. Увеличение содержание кремния до x = 0.1 и выше обеспечивает стабилизацию кубической структуры SrFe_{1-x}Si_xO_{3-δ} в восстановительных условиях.

Рис. 1 – Рентгенограммы оксидов $SrFe_{1-x}Si_xO_{3-\delta}$, оттоженных в восстановительных условиях. Рефлексы, соответствующие фазе браунмиллерита, обозначены треугольниками.

Рис. 2 – Электронограмма, полученная от частиц восстановленного образца $SrFe_{0.9}Si_{0.1}O_{3-\delta}$, содержащих фазу браунмиллерита, ось зоны [110]_{сub}.

На электронно-дифракционных картинах восстановленного образца x = 0.1 обнаружены сверхструктурные рефлексы, характерные для фазы типа – браунмиллерита. На рис. 2 представлена электронограмма для которой можно выделить две сетки рефлексов перовскитной фазы с осями зон типа $[110]_{cub}$ (показанные двумя прямоугольными ячейками) и сверхструктурные рефлексы браунмиллеритной фазы для варианта взаимной ориентации – $[010]br \parallel [001]cub$. Таким образом, механизм стабилизации кубической перовскитной фазы феррита стронция при допировании кремнием

заключается в уменьшении размера случайно ориентированных вакансионно–упорядоченных доменов вплоть до масштаба, меньшего длины когерентного рассеивания рентгеновского излучения.

Мёссбауэровская спектроскопия позволила установить, что во всех восстановленных оксидах $SrFe_{1-x}Si_xO_{3-\delta}$ присутствуют вакансионноупорядоченные нанодомены структуры браунмиллерита, доля катионов железа в которых уменьшается с увеличением содержания кремния: 52% для x = 0.05, 14% для x = 0.10, 6% для x = 0.20.

Результаты термогравиметрических измерений оксидов SrFe_{1-x}Si_xO_{3-δ} на воздухе демонстрируют уменьшение области гомогенности по кислороду с увеличением концентрации кремния, ЧТО способствует улучшению стабильности при нагревании материла. Результаты размерной дилатометрических измерений подтверждают благоприятное влияние кремния на термомеханические свойства феррита. На рис. 3 представлены зависимости содержания кислорода в оксидах от температуры. При высоких температурах содержание кислорода в оксидах увеличивается с ростом содержания кремния. Это обусловлено тем, что степень окисления кремния, 4+, выше средней степени окисления железа в данных условиях. При низких температурах содержание кислорода в оксидах уменьшается с ростом содержания кремния. Это обусловлено тем, что две кислородные вакансии вблизи Si⁴⁺ не могут быть заполнены из-за стабильной тетраэдрической кислородной координации кремния. Поэтому содержание кислорода в оксиде не должно превышать величины $(3-\delta) = 3 - 2x$. Однако, как видно на рис. 3, данное условие не выполняется для составов с x > 0.10, что может быть связано с образованием кластеров, состоящих из двух кремний-кислородных тетраэдров с общей кислородной вакансией, рис 4.

При описании экспериментальных изотермических зависимостей содержания кислорода в SrFe_{1-x}Si_xO_{3- δ} от p_{O_2} использовалось несколько моделей. Выражение (10) предполагает, что все узлы кислорода в перовскитоподобной структуре эквивалентны. Однако пробные расчеты с использованием данного выражения (Модель 1) дали завышенные значения содержания кислорода по сравнению с экспериментальными данными. Модель 2 предполагает, что ионы кислорода и кислородные вакансии из ближайшего окружении кремния не участвуют в обмене с газовой фазой: $[O_m^{2^-}] = 3 - \delta - 4x$; $[V_{Oav}] = \delta - 2x$. Модель 3 основана на Модели 2, но учитывает образование кластеров из двух кремний-кислородных тетраэдров с общей кислородной вакансией (рис. 4), что повышает количество доступных кислородных вакансий в расчете на катион кремния: $[O_m^{2^-}] = 3 - \delta - 4x$ и

Рис. 3 – Температурная зависимость содержания кислорода в образцах $SrFe_{1-x}Si_xO_{3-\delta}$ на воздухе.

Рис. 4 – Кластер из двух кремнийкислородных тетраэдров с общей кислородной вакансией.

 $[V_{O_{av}}] = \delta - 2x + N_{V_{as}}$, где $N_{V_{as}} - доля$ кислородных вакансий, локализованных между двумя Si⁴⁺. На примере описания изотермы содержания кислорода в SrFe_{0.85}Si_{0.15}O_{3- δ} при 750 °C, рис.5, видно, что хорошее описание экспериментальных данных достигается только при использовании Модели 3, поэтому все данные по содержанию кислорода в зависимости от $p_{O_{\gamma}}$ и *T* были описаны в рамках этой модели.

Изотермические зависимости электропроводности от p_{02} представлены рис. 6. примере $SrFe_{0.85}Si_{0.15}O_{3-\delta}$. Наблюдаемое на на изменение проводимости в зависимости от p_{0} , является типичным для материалов на основе SrFeO_{3- δ} [4], где электропроводность обеспечивается ионной, электронной и дырочной проводимостью. Необходимо отметить, что Si⁴⁺ увеличение доли приводит к постепенному снижению электропроводности за счет снижения концентрации ИОНОВ железа, участвующих в транспортном процессе. Полная проводимость в таких материалах в окрестности минимума может быть описана тремя составляющими с разной зависимостью от p_{0_2} :

$$\sigma(T, p_{O_2}) = \sigma_i(T) + \sigma_n^0(T) p_{O_2}^{-\frac{1}{4}} + \sigma_p^0(T) p_{O_2}^{\frac{1}{4}}$$
(13),

где σ_i – ионная проводимость, σ_n^0 и σ_p^0 – значения электронной и дырочной проводимости при $p_{O_2} = 1$ атм. Результаты расчетов с использованием выражения (13), представленные на рис. 6 сплошными линиями, хорошо согласуются с экспериментальными данными. При замещении железа на кремний наблюдается уменьшение всех составляющих электропроводности.

Рис. 5 – Сравнение экспериментальных и расчетных данных по содержанию кислорода в SrFe_{0.85}Si_{0.15}O_{3-δ}.

Рис. 6 – Изотермические зависимости электропроводности оксида x = 0.15 от p_{0_2} . Сплошные линии – результат расчетов согласно уравнению (13).

Снижение ионной проводимости согласуется с данными по атомистическому моделированию и моделированию дефектной структуры, которые показали, что ни кислородные вакансии, ни ионы кислорода из ближайшего окружения кремния не участвуют в обмене с газовой средой.

Использование концентрации электронных носителей, определенных при модельном описании результатов измерений содержания кислорода и электропроводности, позволяет определить подвижность электронных носителей заряда, согласно выражениям:

$$\mu_{\rm n} = \frac{\sigma_{\rm n}}{e \cdot n \cdot N}; \qquad \mu_{\rm p} = \frac{\sigma_{\rm p}}{e \cdot p \cdot N} \tag{14},$$

где σ_n и σ_p - проводимость *n*- и *p*-типа, соответственно, а μ_n и μ_p подвижность электронных носителей *n*- и *p*-типа, соответственно, *e* – элементарный заряд, *N* – количество формульных единиц в 1 см³. Рассчитанная подвижность дырочных носителей заряда почти линейно возрастает с ростом содержания кислорода в оксидах, что связано как с уменьшением дефектности в цепочках Fe-O-Fe, по которым осуществляется перенос заряда, так и с уменьшением среднего расстояния Fe-O в связи с ростом концентрации ионов Fe⁴⁺, радиус которых (R_{CN6} = 0.585 Å) меньше, чем радиус ионов Fe³⁺ (R_{CN6} = 0.645 Å). Средняя подвижность электронных носителей *p*-типа, примерно в десять раз превышает соответствующую подвижность *n*-типа.

В пятой главе представлен анализ термодинамических и электротранспортных свойств $SrFe_{1-x}Sn_xO_{3-\delta}$. Результаты рентгеновской дифракции оксидов $SrFe_{1-x}Sn_xO_{3-\delta}$ (x = 0.05, 0.10, 0.17, 0.25), синтезированных

на воздухе, показали образование однофазных образцов со структурой кубического перовскита (пространственная группа $Pm\bar{3}m$). Параметр кристаллической решетки увеличивается с ростом содержания олова в образцах, что связано с замещением ионов $Fe^{3+}(R_{CN6} = 0.645 \text{ Å})$ и $Fe^{4+}(R_{CN6} = 0.585 \text{ Å})$ ионом большего радиуса $Sn^{4+}(R_{CN6} = 0.690 \text{ Å})$.

Зависимости содержания кислорода в SrFe_{1-x}Sn_xO_{3- δ} ($x \le 0.17$) от p_{O_2} и *T* имеют типичный для перовскитоподобных ферритов вид. Полученные в модельных расчетах константы равновесия реакций (1) и (2) слабо зависят от содержания олова, указывая на то, что этот допант при x = 0.05-0.17 незначительно влияет на процессы окисления и диспропорционирования железа в феррите стронция. Линейные зависимости констант равновесия K_{ox} и K_d от обратной температуры и использование термодинамического

соотношения (5) позволили определить стандартные значения ΔH^0 И энтропии ΔS^{o} энтальпии реакций (1) и (2),таблица 1. Величина стандартной энтальпии диспропорционирования слабо зависит от содержания олова и близка к величинам для других [5, Повышение ферритов 6]. концентрации олова приводит К увеличению $\Delta H_{\rm ox}^{\rm o}$, что объясняется увеличением параметра кристаллической решетки SrFe₁₋ $_x$ Sn_xO_{3- δ} и ослаблением связи Fe–O.

Рассчитанные концентрации ионов железа в SrFe_{1-x}Sn_xO_{3-δ} в зависимости от парциального давления кислорода при разных температурах и степенях замещения железа приведены на рисунке 7. Увеличение содержания олова не

Рис. 7 – Концентрации катионов железа в SrFe_{1-x}Sn_xO_{3- δ} как функции p_{0_2} и *T* (а) и при 950 °C (b).

оказывает влияния на концентрацию ионов Fe^{2+} при фиксированном p_{o_2} , но приводит к уменьшению концентрации ионов Fe^{4+} . Концентрация катионов Fe^{3+} сильно уменьшается с ростом степени замещения, что сопровождается увеличением суммарного зарядового состояния В–подрешетки и содержания кислорода в образцах.

x	$\Delta H_{ m d}^{ m o}/\kappa$ Дж·моль $^{-1}$	$\Delta S_{ m d}^{ m o}/$ Дж·моль $^{-1}$ ·K $^{-1}$	$\Delta H_{ m ox}^{ m o} / \kappa$ Дж \cdot моль $^{-1}$	$\Delta S_{ m ox}^{ m o}$ / Дж·моль $^{-1}$ К $^{-1}$
0.05	128±1	5±1	-99±2	-88 ± 2
0.1	131±1	6±1	-94±1	$-84{\pm}1$
0.17	131±1	6±1	-90±2	-82±2

Таблица 1 – Термодинамические параметры для $SrFe_{1-x}Sn_xO_{3-\delta}$

Концентрации ионных и электронных носителей заряда, рассчитанные из результатов кулонометрического титрования, использованы для анализа результатов измерений электропроводности.

Модельное выражение для описания экспериментальных данных имеет следующий вид:

$$\sigma = N \cdot e \cdot \left(n \cdot \mu_{n} + 2(3 - \delta) \cdot \delta \cdot \mu_{i} + p \cdot (\mu_{p}^{0} + p \cdot \mu_{p}) \right)$$
(15),

где μ_p^0 – подвижность электронных дырок в состоянии n-р равновесия, μ_p и μ_i – коэффициенты, не зависящие от концентрации кислородных вакансий. Результаты аппроксимации выражения (15), приведенные штриховыми линиями на рисунке 8, хорошо описывают экспериментальные данные в области высоких и низких парциальных давлений кислорода и позволяют оценить поведение проводимости в промежуточном интервале. Рассчитанные

Рис. 8 – Изотермы электропроводности $SrFe_{0.9}Sn_{0.1}O_{3-\delta}$ в зависимости от p_{0_2} и *T*. Штриховые линии – результат расчетов по ур. 15.

энергии активации ионной И электронной проводимости, составляющие ~ 0.6 3B и ~ 2.2 3B, соответственно, являются типичными значениями для феррита оксидов на основе [7]. Замещение железа стронция 0.05 - 0.17оловом В пределах вызывает уменьшение ионной и электронной проводимости, но не приводит к выраженным изменениям их энергий активации. Таким образом, инкорпорирование олова не влияет на механизмы электронного ионного И транспорта.

Шестая посвящена описанию дефектной структуры глава И транспортных свойств SrFe_{1-x}Mo_xO_{3-d}. Согласно результатам рентгеновской дифракции оксиды SrFe_{1-x}Mo_xO_{3- δ} (x = 0, 0.07, 0.15, 0.25) являются однофазными. Замещенные ферриты имеют кубическую симметрию (пр. гр. $Pm\bar{3}m$), в то время как феррит стронция имеет тетрагональную структуру (пр. гр. *I4/mmm*). Оксид SrFe_{0.7}Mo_{0.3}O_{3-δ}, синтезированный на воздухе, содержит примесь молибдата стронция SrMoO₄. Отжиг в потоке аргона (p_{0} . ~ 10⁻⁴ атм) и при p_{O_2} ~ 10⁻¹² приводит к образованию однофазных образцов со структурой двойного перовскита с кубической (пр. гр. Fm3m) и тетрагональной симметрией (пр. гр. *I4mmm*), соответственно. Результаты электронно-микроскопического исследования показали, что восстановленные в разных условиях образцы SrFe_{0.7}Mo_{0.3}O₃₋₆ можно характеризовать как слабо упорядоченные с параметром дальнего

порядка *η* отличным от нуля, рис. 9.

Изотермические зависимости содержания кислорода ОТ $p_{0_{2}},$ рисунок 10, рассчитанные с использованием разных моделей 3). имеют минимальные (глава расхождения с экспериментальными кривыми. Расчеты по двум моделям также приводят к схожим величинам термодинамических функций.

Атомистическое моделирование было использовано в качестве метода исследования координационной сферы катионов молибдена в $SrFe_{1-x}Mo_xO_{3-\delta}$ и проводилось для оксида $SrFe_{0.85}Mo_{0.15}O_{2.725}$ с катионами железа и молибдена в степенях окисления 3+

Рис. 9 – Электронограмма образца $SrFe_{0.7}Mo_{0.3}O_{3-\delta}$, полученного в потоке аргона, со структурой двойного перовскита (*Fm3m*), ось зоны $[011]_{ку\delta}$. Стрелками указаны сверхструктурные рефлексы упорядоченной области.

и 6+, соответственно. Расчет проводился на двух суперячейках с разными изначальными конфигурациями. Несмотря на различие стартовых конфигураций, расчеты привели к идентичному результату, согласно которому, катионы молибдена сохраняют 6-кратное кислородное окружение, в то время как ионы Fe³⁺ могут иметь 0, 1 или 2 вакансии кислорода в первой координационной сфере.

Рис. 10 – Кислородная несмтехиометрия в SrFe_{1-x}Mo_xO_{3- δ} в зависимости от p_{o_2} и *T*. Сплошные линии – результат описания.

Рассчитанные концентрации ионов молибдена в SrFe_{1-x}Mo_xO_{3- δ} (x ≤ 0.25) при температуре 950 °С в зависимости от p_{O_2} приведены на 11. При рисунке низких p_{0_2} происходит восстановление Мо⁶⁺. Концентрация ионов Мо⁵⁺ заметно возрастает с общим содержанием молибдена. Ha рисунке 12 представлены зависимости степени окисления железа и молибдена при различных содержаниях допанта при 950 °C. Видно, что увеличение концентрации молибдена приводит К заметному уменьшению Fe^{4+} ионов концентрации В окислительных условиях, но слабо влияет на соотношение Fe^{2+} : Fe^{3+} в восстановительных условиях. Расчеты показали, что электроны, локализованные на молибдене даже при минимальном содержании допанта (x = 0.07) составляют ~ 70% от общей концентрации электронов при $p_{O_2} > 10^{-10}$ атм.

Электропроводность оксидов $SrFe_{1-x}Mo_xO_{3-\delta}$ (x = 0.07, 0.15, 0.25, 0.30) была измерена в зависимости от p_{O_2} и *T*. Данные, представленные на рисунке 13, показывают, что электронная проводимость SrFe_{0.7}Mo_{0.3}O₃₋₆ ~ 40 $CM \cdot cM^{-1}$, что приблизительно достигает В четыре раза выше SrFe_{0.75}Mo_{0.25}O_{3- δ} в этих условиях. проводимости Согласно данным, представленным на рисунке 14, подвижность электронов примерно в два раза выше, чем подвижность дырок, и практически не зависит от содержания кислорода и температуры в изученных экспериментальных условиях. Стоит отметить, что полученные результаты не являются типичными, поскольку подвижность носителей р-типа в перовскитоподобных ферритах обычно выше, чем у носителей n-типа, как например в $SrFe_{1-x}Si_xO_{3-\delta}$ и $SrFe_{1-x}Sn_xO_{3-\delta}$.

Рис. 11 – Концентрации катионов Мо в $SrFe_{1-x}Mo_xO_{3-\delta}$ как функции парциального давления кислорода при 950 °C.

Рис. 12 – Средняя степень окисления катионов Мо (z+) и Fe (y+) в SrFe_{1-x}Mo_xO_{3- δ} при 950 °C как функции p_{0_2} . На вставке показаны относительное количество электронов, локализованных на молибдене.

Для того чтобы понять природу обнаруженных особенностей, данные по электропроводности оксидов SrFe_{1-x}Mo_xO_{3- δ} (*x* = 0.07, 0.15, 0.25) описаны при помощи уравнения 15. Концентрации носителей заряда получены при анализе кислородной нестехиометрии оксидов SrFe_{1-x}Mo_xO_{3- δ}. Результаты модельного описания проводимости хорошо согласуются с экспериментом. Подвижность дырочных (при *p* = 0.1) и электронных носителей заряда в зависимости от содержания молибдена при 950 °C представлена на рисунке 15. Увеличение доли молибдена способствует уменьшению подвижности

Рис. 13 – Электропроводность состава $SrFe_{0.7}Mo_{0.3}O_{3-\delta}$ в зависимости от p_{O_2} и *T*.

Рис. 14 – Подвижность дырочных и электронных носителей заряда в зависимости от $(3-\delta)$ в SrFe_{0.7}Mo_{0.3}O_{3- δ}.

дырок и увеличению подвижности электронов. Предполагается, что первый эффект связан с блокированием катионами Мо⁶⁺ переноса дырок через Fe–O–Fe цепочки. Второй эффект вызван частичным восстановлением молибдена до Мо⁵⁺ в условиях низкой кислородной активности. В отличие от почти линейного уменьшения подвижности дырок, подвижность электронов демонстрирует ускоряющийся рост с повышением доли молибдена.

Электронная дифракция показала, что микроструктура $SrFe_{0.7}Mo_{0.3}O_{3-\delta}$ включает наноразмерные области двойного перовскита, рассеянные в

разупорядоченного матрице перовскита, рис. 9. Известно, что полуметаллическая природа высокоупорядоченного двойного перовскита Sr₂FeMoO₆ обеспечивает высокую электронную подвижность [8]. Поэтому, оксиды $SrFe_{1-x}Mo_xO_{3-\delta}$ могут быть рассмотрены как композиты, состоящие ИЗ разупорядоченной перовскитной матрицы с медленным электронным транспортом и наполнителя в виде доменов двойного перовскита С высокой электронной Обнаруженное подвижностью.

Рис. 15 – Подвижность p-типа носителей заряда при p = 0.1 и n-типа в зависимости от x в SrFe_{1-x}Mo_xO_{3- δ} при 950 °C. Сплошная линия – результат описания по уравнению 16.

поведение величины μ_n , в частности, ее резкое увеличение при x > 0.25, рис. 15, является типичной характеристикой эффекта перколяции. В данном случае, подвижность носителей *n*-типа при содержании молибдена ниже порога перколяции регулируется следующим выражением [9]:

$$\mu_{\rm n} \propto \left(x_{\rm c} - x\right)^{-s} \tag{16},$$

где x – это содержание молибдена, x_c – порог перколяции, s – критический индекс, управляющий изменением физической величины вблизи порога перколяции. Расчетная кривая при параметрах $x_c = 0.327\pm0.003$ и $s = 1.00\pm0.06$ хорошо ложится на экспериментальные точки, как показано на рис. 15. Оксиды SrFe_{1-x}Mo_xO_{3- δ} считаются перспективными материалами анодов твердооксидных топливных элементов [10], поэтому полученный результат имеет важное практическое значение. Наилучший баланс высокой электронной проводимости и стабильности материала анода SrFe_{1-x}Mo_xO_{3- δ} может быть достигнут при содержании молибдена чуть выше порога перколяции.

выводы

1. Синтезированы твердые растворы $SrFe_{1-x}M_xO_{3-\delta}$ (M = Si, Sn, Mo). Определены пределы растворимости Si и Mo на воздухе. Показано, что частичное замещение железа на Si, Sn и Mo приводит к стабилизации кубической структуры, как в окислительных, так и в восстановительных условиях. Согласно электронной дифракции перовскитная матрица оксидов $SrFe_{1-x}Si_xO_{3-\delta}$ содержит наноразмерные домены со структурой браунмиллерита, а $SrFe_{1-x}Mo_xO_{3-\delta}$ – со структурой двойного перовскита.

2. Получены экспериментальные зависимости p_{O_2} -*T*- δ сложных оксидов SrFe_{1-x}M_xO_{3- δ} (M = Si, Sn, Mo). Предложены модели равновесия дефектов, позволившие хорошо описать экспериментальные результаты, определить энтальпию и энтропию реакций образования дефектов и рассчитать концентрации носителей заряда. Установлено, что влияние Sn на процессы дефектообразования обусловлено в основном уменьшением содержания железа в оксиде. Влияние Si определяется его тетраэдрической координацией и состоит в исключении двух кислородных вакансий на каждый атом кремния из обменных процессов. Увеличение концентрации Si сопровождается образованием кремний–кислородных кластеров с общей вакансией, что снижает долю недоступных вакансий.

3. Впервые выполнен анализ равновесия дефектов в серии оксидов, содержащих два элемента с переменной степенью окисления: SrFe_{1-x}M_xO_{3-δ}. Показано, что увеличение содержания Мо в оксидах повышает концентрацию электронных носителей n-типа в восстановительных условиях. В то же время, в условиях эксперимента Мо сохраняет октаэдрическую кислородную координацию, поэтому увеличение содержания Мо понижает концентрацию подвижных ионов кислорода.

4. Результаты измерения электропроводности замещенных ферритов, полученные в широких интервалах парциального давления кислорода, впервые описаны в рамках единой модели. Показано, что увеличение содержания кислорода в оксидах сопровождается линейным ростом подвижности дырочных носителей, но не оказывает существенного влияния на подвижность электронных носителей. Эффект связан с изменением степени дефектности транспортной матрицы Fe–O–Fe и длины связи Fe–O. Частичное замещение железа на Si, Sn и Mo приводит к уменьшению подвижности электронных дырок. Подвижность носителей п-типа также уменьшается при замещении на Si и Sn, но увеличивается при замещении железа на Mo.

5. Вскрыта локальная структурная неоднородность $SrFe_{1-x}Mo_xO_{3-\delta}$, определяющая два независимых механизма электронной проводимости. Оксиды $SrFe_{1-x}Mo_xO_{3-\delta}$ проявляют свойства композитов, состоящих из перовскитной матрицы с низкой подвижностью электронов и доменов двойного перовскита Sr_2FeMoO_6 с высокой подвижностью, доля которых растет с концентрацией молибдена. Повышение концентрации молибдена до $x \sim 0.33$ приводит к резкому увеличению электронной проводимости, что объясняется эффектом перколяции.

Список цитируемой литературы:

1. **Patrakeev, M.V.** Applications of coulometric titration for studies of oxygen non-stoichiometry in oxides / M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov // J. Solid State Electrochem. – 2011. – Vol. 15. – P. 931–954.

2. **Patrakeev M.V.** Oxygen nonstoichiometry, conductivity, and seebeck coefficient of $La_{0.3}Sr_{0.7}Fe_{1-x}Ga_xO_{2.65+\delta}$ perovskites / M.V. Patrakeev, E.B. Mitberg, A.A. Lakhtin, I.A. Leonidov, V.L. Kozhevnikov, V.V. Kharton, M. Avdeev, P.M.B. Marques // J. Solid State Chem. – 2002. – Vol. 167. – P. 203–213.

3. **Gale J.D.** GULP: A computer program for the symmetry-adapted simulation of solids / J.D. Gale // JCS Faraday Trans. – 1997. – Vol. 93. – P. 629–637.

4. **Poulsen F.W.** Conductivity and seebeck measurements on strontium ferrates / F.W. Poulsen, G. Lauvstad, R. Tunold // Solid State Ionics. – 1994. – Vol. 72. – P. 47–53.

5. **Mizusaki J.** Thermodynamic quantities and defect equilibrium in the perovskite-type oxide solid solution $La_{1-x}Sr_xFeO_{3-\delta}$ / J. Mizusaki, M. Yoshihiro, S. Yamauchi, K. Fueki // J. Solid State Chem. – 1987. – Vol. 67. – P. 1–8.

6. **Yoo J.** Determination of oxygen nonstoichiometry in SrFeO_{3- δ} by solid-state Coulometric titration / J. Yoo, C-Y. Yoo, J-H. Yu, A.J. Jacobson // J. Am. Ceram. Soc. – 2017. – P. 1–10.

7. **Patrakeev M.V.** Ion and electron conduction in $SrFe_{1-x}Sc_xO_{3-\delta}$ / M.V. Patrakeev, A.A.Markov, I.A.Leonidov,V.L.Kozhevnikov, V.V. Kharton // Solid State Ion. – 2006. – Vol. 177. – P. 1757–1760.

8. **Tomioca Y.** Magnetic and electronic properties of a single crystal of ordered double perovskite Sr_2FeMoO_6 / Y. Tomioca, T. Okuda, Y. Okimoto, R. Kumai, K. I. Kobayashi, Y. Tokura // Phys. Rev. B. – 2000. – Vol. 61. – P. 422–427.

9. Nan C. -W. Physical Properties of Composites Near Percolation / C. -W. Nan,
Y. Shen, J. Ma // Annu. Rev. Mater. Res. – 2010. – Vol. 40. – P. 131–151.

10. **Meng X.** Characterization of $SrFe_{0.75}Mo_{0.25}O_{3-\delta}-La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$ composite cathodes prepared by infiltration / X. Meng, D. Han, H. Wu, J. Li, Z. Zhan // J. Power Sources. – 2014. – Vol. 246. –P. 906–911.

Основные результаты диссертации опубликованы в работах:

- Merkulov, O.V. Defect chemistry and high-temperature transport in SrFe_{1-x}Sn_xO_{3-δ} / O.V. Merkulov, R.R. Samigullin, A.A. Markov, I.A. Leonidov, M.V. Patrakeev // J. Solid State Chem. – 2016. – Vol. 243. – P. 190–197.
- Merkulov, O.V. Oxygen nonstoichiometry and defect chemistry of perovskitestructured SrFe_{1-x}Mo_xO_{3-δ} solid solutions / O.V. Merkulov, E.N. Naumovich, M.V. Patrakeev, A.A. Markov, Henny J.M. Bouwmeester, I.A. Leonidov, V.L. Kozhevnikov // Solid State Ionics. – 2016. – Vol. 292. – P. 116–121.
- Merkulov, O.V. Structural features and high-temperature properties of SrFe_{1-x}Si_xO_{3-δ} / O.V. Merkulov, A.A. Markov, M.V. Patrakeev, A.V. Chukin, I.A. Leonidov, V.L. Kozhevnikov // Solid State Ionics. – 2016. – Vol. 292. – P. 83–87.
- Merkulov, O.V. Defect formation, ordering, and transport in SrFe_{1-x}Si_xO_{3-δ} (x = 0.05–0.20) / O.V. Merkulov, E.N. Naumovich, M.V. Patrakeev, A.A. Markov, E.V. Shalaeva, V.V. Kharton, E.V. Tsipis, J.C. Waerenborgh, I.A. Leonidov, V.L. Kozhevnikov // J. Solid State Electrochem. 2018. Vol. 22. P. 727–737.
- 5. **Merkulov, O.V.** Structural features and high-temperature transport in $SrFe_{0.7}Mo_{0.3}O_{3-\delta}$ / O.V. Merkulov, A.A. Markov, M.V. Patrakeev, I.A. Leonidov, E.V. Shalaeva, A.P. Tyutyunnik, V.L. Kozhevnikov // J. Solid State Chem. 2018. Vol. 258. P. 447–452.
- 6. **Merkulov, O.V.** Oxygen nonstoichiometry and thermodynamic quantities in solid solution $SrFe_{1-x}Sn_xO_{3-\delta}$ / O.V. Merkulov, A.A. Markov, I.A. Leonidov, M.V. Patrakeev, V.L. Kozhevnikov // J. Solid State Chem. 2018. Vol. 262. P. 121–126.

Подписано в печать 04.02.2019г. Формат А5. Бумага «Снегурочка» 80 г/м². Печать цифровая. Тираж 100 экз. Заказ № 460

Отпечатано в типографии "Седьмой легион". 620041, г.Екатеринбург, Советская, 39-1 Тел.: 8 (343) 288-71-82