РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | |
 16.10.2005   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаци


16.10.2005
















Source:  


Date:  

2005-10-15
















Print this page
Email to friend

How To Braid Nanoropes


Biomimetic systems that are composed of rigid polymers or filaments and crosslinking molecules can be used to assemble filament networks and bundles. The bundles represent `nanoropes' and exhibit material properties that are primarily determined by the number of plaited filaments. Scientists at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany have now shown that this assembly of filaments into bundles is prevented by the thermal motion of the filaments, unless the crosslinker concentration exceeds a certain threshold value. The latter value depends on the number of filaments, but remains finite in the limit of a large filament number. As the crosslinker concentration is lowered, the bundles may segregate into small sub-bundles, or undergo abrupt unbinding transitions. (Physical Review Letters 95, 038102, July, 2005).

















Three snapshots of a bundle formed by twenty filaments as observed in computer simulations: (a) Loose bundle for a crosslinker concentration that is only slightly above the threshold value; (b) and (c) show two different conformations of the same bundle corresponding to a segregated conformation with three sub-bundles and a compact conformation with roughly cylindrical shape, respectively. (Image: Max Planck Institute of Colloids and Interfaces)

Related News Stories





Chemists Learn To Build Curved Structures With Nanoscale Building Blocks (January 19, 2004) -- A team of Northwestern University chemists report they have discovered ways to construct nanoscale building blocks that assemble into flat or curved structures with a high level of predictability, ... full story


DNA Recombination And Repair -- A New Twist To RecA Function (February 13, 2005) -- The RecA filament plays a key role in bacterial DNA recombination and repair. Biochemical studies now reveal some unexpected properties of the ... full story


Motor Transport In Bio-nano Systems (June 6, 2005) -- Max Planck researchers determine optimal parameters for biomimetic transport systems based on molecular ... full story


Inflatable Fabric Airlock Breezes (May 26, 2003) -- Space just got skinnier: an inflatable fabric airlock could become standard equipment on future space stations after breezing through its prototype testing in ... full story










Related section:








Biological cells are mechanically stable because they contain actin filaments and microtubules that form networks and bundles. These filament architectures are determined and controlled by crosslinking proteins, which have two sticky ends that bind to different filaments. In order to understand the underlying forces and to optimise the mechanical properties of these architectures, one must study biomimetic model systems that are solely composed of filaments and crosslinking proteins. One important example is the assembly of several filaments into thick bundles or ‘nanoropes’ that are more rigid, and sustain a larger external load, than single filaments.


The assembly of filaments by molecular crosslinkers is disturbed by the thermal motion of the filaments. Scientists at the Max Planck Institute of Colloids and Interfaces have now shown that this thermal motion prevents filament assembly unless the crosslinker concentration exceeds a certain threshold value. The latter value depends on the filament rigidity, on the binding energy of the crosslinkers, and on the temperature. Furthermore, the threshold value decreases as the number N of filaments within the bundle is increased, but remains finite in the limit of large N.


Snapshots of filament bundles as observed in computer simulations are displayed in Fig. 1. The snapshot in Figure 1(a) shows a loose bundle for a crosslinker concentration only slightly above the threshold value. The simulations also reveal that these bundles do not always reach their equilibrium shape, but often segregate into sub-bundles containing typically five filaments as shown in Figure 1(b). This bundle morphology differs strongly from the fully equilibrated bundle shape as shown in Figure 1(c) for the same system. Which of the two morphologies is attained depends on the initial arrangement of the filaments and on the kinetics of the assembly process.


Biomimetic systems, consisting of solutions of actin filaments and crosslinking proteins, have also been studied experimentally by several research groups. The available experimental data is consistent with the new theory based on the interplay of molecular crosslinkers and thermal motion. In particular, there is some experimental evidence for the threshold concentration of crosslinkers and the sudden onset of filament bundle formation above this concentration, but systematic experimental studies remain to be done that explore the dependence on the filament number N.


Apart from representing important structural elements, filament bundles can also provide strong pushing forces. These pushing forces arise from the directed growth of the filaments by the addition of molecular building blocks. One important problem is to understand the dependence of these pushing forces on the number of filaments within the bundle.


Editor's Note: The original news release can be found here


Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev .  honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2019 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок