| | | | |
| | | |
 11.07.2008   Карта сайта     Language По-русски По-английски
Новые материалы
Электротехника и обработка материалов
Статистика публикаци


Room temperature superconductivity

One step closer to the Holy Grail of physics

Scientists at the University of Cambridge have for the first time identified a key component to unravelling the mystery of room temperature superconductivity, according to a paper published in today's edition of the scientific journal Nature.

The quest for room temperature superconductivity has gripped physics researchers since they saw the possibility more than two decades ago. Materials that could potentially transport electricity with zero loss (resistance) at room temperature hold vast potential; some of the possible applications include a magnetically levitated superfast train, efficient magnetic resonance imaging (MRI), lossless power generators, transformers, and transmission lines, powerful supercomputers, etc.

Unfortunately, scientists have been unable to decipher how copper oxide materials superconduct at extremely cold temperatures (such as that of liquid nitrogen), much less design materials that can superconduct at higher temperatures.

Materials that are known to superconduct at the highest temperatures are, unexpectedly, ceramic insulators that behave as magnets before 'doping' (the method of introducing impurities to a semiconductor to modify its electrical properties). Upon doping charge carriers (holes or electrons) into these parent magnetic insulators, they mysteriously begin to superconduct, i.e. the doped carriers form pairs that carry electricity without loss.

The essential conundrum facing researchers in this area has been: how does a magnet that cannot transport electricity transform into a superconductor that is a perfect conductor of electricity? The Cambridge team have made a significant advance in answering this question.

The researchers have discovered where the charge 'hole' carriers that play a significant role in the superconductivity originate within the electronic structure of copper-oxide superconductors. These findings are particularly important for the next step of deciphering the glue that binds the holes together and determining what enables them to superconduct.

Dr Suchitra E. Sebastian, lead author of the study, commented, "An experimental difficulty in the past has been accessing the underlying microscopics of the system once it begins to superconduct. Superconductivity throws a manner of 'veil' over the system, hiding its inner workings from experimental probes. A major advance has been our use of high magnetic fields, which punch holes through the superconducting shroud, known as vortices - regions where superconductivity is destroyed, through which the underlying electronic structure can be probed.

"We have successfully unearthed for the first time in a high temperature superconductor the location in the electronic structure where 'pockets' of doped hole carriers aggregate. Our experiments have thus made an important advance toward understanding how superconducting pairs form out of these hole pockets."

By determining exactly where the doped holes aggregate in the electronic structure of these superconductors, the researchers have been able to advance understanding in two vital areas:

(1) A direct probe revealing the location and size of pockets of holes is an essential step to determining how these particles stick together to superconduct.

(2) Their experiments have successfully accessed the region betwixt magnetism and superconductivity: when the superconducting veil is partially lifted, their experiments suggest the existence of underlying magnetism which shapes the hole pockets. Interplay between magnetism and superconductivity is therefore indicated - leading to the next question to be addressed.

Do these forms of order compete, with magnetism appearing in the vortex regions where superconductivity is killed, as they suggest? Or do they complement each other by some more intricate mechanism? One possibility they suggest for the coexistence of two very different physical phenomena is that the non-superconducting vortex cores may behave in concert, exhibiting collective magnetism while the rest of the material superconducts.


Notes to editors:

1. The paper 'A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor' will be published in the 09 July edition of Nature.

2. The research was funded by the Engineering and Physical Sciences Research Council (EPSRC). EPSRC is the UK's main agency for funding research in engineering and the physical sciences. The EPSRC invests around Ј800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. Website address for more information on EPSRC: www.epsrc.ac.uk/

Дизайн и программирование N-Studio 
  • Chen Wev .  honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2019 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок