РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | |
 20.04.2006   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаци


20.04.2006

Nature 440, 1025-1028 (20 April 2006) | doi:10.1038/nature04650; Received 6 September 2005; ; Accepted 13 February 2006


Polarons and confinement of electronic motion to two dimensions in a layered manganite


H. M. Rønnow1, Ch. Renner2, G. Aeppli2, T. Kimura3 and Y. Tokura4



A remarkable feature of layered transition-metal oxides—most famously, the high-temperature superconductors—is that they can display hugely anisotropic electrical and optical properties (for example, seeming to be insulating perpendicular to the layers and metallic within them), even when prepared as bulk three-dimensional single crystals. This is the phenomenon of 'confinement', a concept at odds with the conventional theory of solids, and recognized1 as due to magnetic and electron–lattice interactions within the layers that must be overcome at a substantial energy cost if electrons are to be transferred between layers. The associated energy gap, or 'pseudogap', is particularly obvious in experiments where charge is moved perpendicular to the planes, most notably scanning tunnelling microscopy2 and polarized infrared spectroscopy3. Here, using the same experimental tools, we show that there is a second family of transition-metal oxides—the layered manganites La2-2xSr1+2xMn2O7—with even more extreme confinement and pseudogap effects. The data demonstrate quantitatively that because the charge carriers are attached to polarons (lattice- and spin-textures within the planes), it is as difficult to remove them from the planes through vacuum-tunnelling into a conventional metallic tip, as it is for them to move between Mn-rich layers within the material itself.






  1. Laboratory for Neutron Scattering, ETH-Zürich and Paul Scherrer Institut, 5232 Villigen, Switzerland
  2. London Centre for Nanotechnology & Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  3. Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA
  4. Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, and Spin Superstructure Project (SSS), ERATO, Japan Science and Technology Agency (JST), Tsukuba 305-0046, Japan


Correspondence to: Ch. Renner2 Correspondence and requests for materials should be addressed to Ch.R. (Email: c.renner@ucl.ac.uk).



Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev .  honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2019 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок