На правах рукописи

Ž___ -

Антонов Сергей Михайлович

ВЗАИМОДЕЙСТВИЕ ВЯЗКИХ РАСТВОРОВ НСІ С КАРБОНАТНОЙ ПОРОДОЙ И ИХ ФИЛЬТРАЦИЯ В МОДЕЛИ ПЛАСТА

02.00.04 – физическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2018

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Тюменский государственный университет»

Научный руководитель:	доктор химических наук, профессор Андреев Олег Валерьевич					
Официальные оппоненты:	Пимнева Людмила Анатольевна, доктор химических наук, профессор, заведующая кафедрой общей и специальной химии, ФГБОУ ВО «Тюменский индустриальный университет»					
	Сторожок Надежда Михайловна, доктор химических наук, профессор, профессор кафедры химии, ФГБОУ ВО «Тюменский государственный медицинский университет» Министерства здравоохранения Российской Федерации					
Ведущая организация:	ФГБУН Федеральный исследовательский центр Тюменский научный центр Сибирского					

Защита состоится «23» марта 2018 г. в 12⁰⁰ часов на заседании диссертационного совета Д 004.004.01 на базе ФГБУН Института химии твердого тела Уральского отделения Российской академии наук по адресу: 620990, г. Екатеринбург, ул. Первомайская, 91.

отделения РАН

С диссертацией можно ознакомиться в Центральной научной библиотеке УрО РАН и на сайте ФГБУН Института химии твердого тела УрО РАН: http://www.ihim.uran.ru

Автореферат разослан « » 2018 года.

Ученый секретарь диссертационного совета кандидат химических наук

Диер- Дьячкова Т.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Особенности нефтяных месторождений Восточной Сибири требуют решения специальных физико-химических задач, возникающих при методах воздействии растворами HCl на карбонатные минералы. Месторождения Восточной Сибири образованы преимущественно минералами доломитом CaMg(CO₃)₂ и кальцитом CaCO₃ Их отличает сложное геологическое строение трещинно-каверно-поровый коллектор, аномально низкие пластовые температуры и давления (t = 12-14 °C, P = 10 МПа), высокая минерализация пластовой воды ($C_{\text{NaCl}} = 150$ г/л) [1]. Кислотная обработка карбонатных коллекторов осложнена нейтрализацией растворов HCl в непосредственной близости от стенки скважины, что приводит к образованию объемных каверн. Дренирование, закачиваемых растворов HCl, в ранее обводненные пропластки приводит к потерям рабочего раствора [2,3].

Увеличение вязкости раствора HCl синтетическими полимерами И биополимерами, растворами ПАВ снижает активность катионов Н⁺. При подобных растворов выравнивается профиль приемистости закачке нагнетательных и профиль притока добывающих скважин [4]. Малоизученны кинетические процессы растворения минералов CaMg(CO₃)₂ и CaCO₃ в растворах HCl высокой вязкости, не определены коэффициенты массопередачи $K_{\rm M}$, энергии активации реакций $E_{\rm a}$ кислотно-карбонатного взаимодействия при низких температурах и высокой минерализации раствора. Не установлены параметры создания червоточин при фильтрации вязких растворов HCl в низкотемпературном карбонатном коллекторе с высокой минерализацией пластовой воды.

Несомненно, научный и прикладной интерес представляет изучение кинетики растворения карбонатной породы в растворах HCl высокой вязкости, а также установление характеристик фильтрации растворов в продуктивных карбонатных пластах для создания в них червоточин.

Цель работы состоит в определении физико-химических параметров вязких высокоминерализованных ($C_{\text{NaCl}} = 150$ г/л) растворов HCl в термобарических (пластовых) и нормальных условиях, в установлении характеристик их взаимодействия с карбонатными минералами и фильтрации в моделях карбонатного пласта.

Задачи исследования:

1. Определить вязкостные характеристики растворов HCl с добавлением загустителей в термобарических условиях низкотемпературного карбонатного пласта (P = 10 MПa, t = 12 °C) с высокой концентрацией хлорида натрия ($C_{\text{NaCl}} = 150$ г/л) в растворе. Установить оптимальные концентрации загустителей для создания эффективных кислотных растворов. Исследовать влияние загустителей соляной кислоты на межфазное натяжение на границе раздела нефть-кислота в растворах дистиллированной и минерализованной вод при P = 10 МПа, t = 12 °C.

2. Провести растворение карбонатных минералов в вязких растворах HCl в квазистатических условиях (P = 0,101 МПа, t = 10, 17, 25 °C), при высокой минерализации раствора ($C_{\text{NaCl}} = 150$ г/л). Подобрать кинетическое уравнение, описывающее химические реакции взаимодействия кальцита CaCO₃ и доломита CaMg(CO₃)₂ с растворами HCl различной вязкости. Определить кинетические характеристики реакции взаимодействия растворов кислот с карбонатными минералами (коэффициент массопередачи K_{M} , энергия активация реакции E_a)

3. Определить фильтрационные характеристики растворов соляной кислоты HCl с различной вязкостью на моделях карбонатного пласта в термобарических условиях ($P = 10 \text{ M}\Pi a$, t = 12 °C).

4. Исследовать влияние скорости закачки вязких растворов HCl на структуру образующихся флюидопроводящих каналов. Вычислить число Дамкелера N_{Da} для каждого канала фильтрации, образованного вязкими растворами HCl в карбонатной породе и определить скорость закачки растворов для получения приемлемых каналов растворения – червоточин.

Научная новизна работы:

1. Вязкие растворы HCl (12 мас. %) с добавлением биополимеров и карбоксибетаина устойчивы при минерализации воды $C_{\text{NaCl}} = 150$ г/л, раствор HCl с добавкой полиакриламида подвержен деструкции. Добавление карбоксибетаина, ксантана, склероглюкана в раствор HCl снижает межфазное натяжение на границе нефть-кислотный раствор до $\sigma = 0,21$ мH/м, $\sigma = 8,01$ мH/м и $\sigma = 8,56$ мH/м соответственно, при P = 10 МПа, t = 12 °C, $C_{\text{NaCl}} = 150$ г/л. Добавление 0,5 мас. % биополимеров ксантана и склероглюкана; 6,5 мас. % раствора ПАВ карбоксибетаина; 0,8 мас. % синтетического полимера полиакриламида (ПАА) повышает значения вязкости до $\eta = 131,51-62,52$ мПа·с, $\eta = 107,51-48,60$ мПа·с, $\eta = 99,05-46,37$ мПа·с, $\eta = 112,89-58,53$ мПа·с, при скоростях сдвига $\dot{\gamma} = 25-100$ с⁻¹, P = 10 МПа, t = 12 °C.

2. Определены коэффициенты массопередачи $K_{\rm M}$, энергии активации реакций $E_{\rm a}$ минерализованных растворов ($C_{\rm NaCl} = 150$ г/л) HCl (12 мас. %) различной вязкости с доломитом Ca_{1,16}Mg_{0,84}(CO₃)₂ и кальцитом CaCO₃ при давлении P = 0,101 МПа, температурах t = 10, 17, 25 °C. Добавление загустителей в раствор HCl приводит к замедлению скорости кислотно-карбонатного взаимодействия более чем в 7 раз. По значениям величин энергии активации $E_{\rm a}$ (11,7-18,9 кДж/моль) сделан вывод о протекании реакции в диффузионной области.

3. В вязком растворе HCl (12 мас. %) + Карбоксибетаин (6,5 мас. %) 60 % мицелл раствора имеют размер в пределах 1-10 нм, 40 % мицелл – 200-1200 нм. В нейтрализованном растворе размеры мицелл составили 2000-7000 нм.

4. Экспериментально установлены характеристики фильтрации вязких растворов HCl (12 мас. %) через модели карбонатного пласта в термобарических условиях пласта ($P = 10 \text{ M}\Pi a$, t = 12 °C). Определены условия фильтрации вязких растворов HCl через модели карбонатного пласта, при которых образуются каналы растворения со структурой червоточины.

Теоретическая и практическая значимость. Определены энергии активации E_a и коэффициенты массопередачи K_M реакций взаимодействия карбонатных минералов с минерализованными растворами HCl (12 мас. %) низкой и высокой вязкости. Полученные результаты могут использоваться в качестве справочных данных.

Предложены составы вязких водных растворов HCl для обработки карбонатных коллекторов: содержащие 12 мас. % соляной кислоты, биополимеры склероглюкан, ПАВ карбоксибетаин. ксантан, раствор Определены реологические характеристики, межфазных ИХ значения натяжений.

Определены условия проведения кислотных обработок, приводящих к формированию каналов растворения со структурой червоточины при наименьших затратах вязких кислотных растворов.

Даны рекомендации по применению в промысловых условиях, разработанных вязких водных растворов HCl, а также рекомендации планирования геолого-технических мероприятий по интенсификации притока нефти в добывающих скважинах, по выравниванию профиля приемистости реагента вытеснения в нагнетательных скважинах.

Методология и методы исследования. Разработка и исследование физико-химических свойств растворов соляной кислоты с повышенной вязкостью ($C_{\rm HCl} = 12$ мас. %) основаны на работах зарубежных и отечественных специалистов в области изучения влияния добавок в растворы соляной кислоты на характеристики их взаимодействия с карбонатными минералами в атмосферных и термобарических условиях. В качестве источников информации использованы научные труды, научно-исследовательские разработки, государственные и отраслевые стандарты.

Достоверность результатов обеспечивается использованием физикохимических методов анализа, выполненных на современном поверенном оборудовании, воспроизводимостью экспериментальных данных в пределах заданной точности, согласованностью с общепринятыми научными положениями и известными литературными данными.

Положения, выносимые на защиту:

1. Результаты реологических исследований растворов HCl (12 мас. %) с добавками биополимеров ксантан и склероглюкан, раствора ПАВ карбоксибетаин, синтетического полимера ПАА. Межфазное натяжение σ на границе нефть-вязкие растворы HCl.

2. Кинетика кислотно-карбонатного взаимодействия вязких высокоминерализованных ($C_{\text{NaCl}} = 150 \text{ г/л}$) растворов HCl (12 мас. %) с доломитом Ca_{1,16}Mg_{0,84}(CO₃)₂ и кальцитом CaCO₃. Уравнение для описания реакций взаимодействия кислотных растворов с карбонатными минералами и определение коэффициента массопередачи K_{M} . Энергии активаций реакций E_{a} взаимодействия вязких растворов HCl с карбонатными минералами.

3. Условия формирования каналов фильтрации со структурой червоточины, образующихся при фильтрации вязких растворов HCl в модели

5

карбонатного пласта. Расчет чисел Дамкелера N_{Da} характеризующих пространственную форму каналов фильтрации кислотных растворов в горной породе.

работы. Материалы исследования Апробация докладывались И обсуждались на 64 студенческой научной конференции ТюмГУ (Тюмень, 18 апреля 2013 г.); II Международной научно-технической конференции «ФизХимБио – 2013» (Севастополь, 27-29 ноября 2013 г.); Всероссийской научно-практической конференции «Химия: образование, наука и технология» (Якутск, 27-29 ноября 2013 г.); XVIII Международном научном симпозиуме «Проблемы геологии и освоения нёдр» (Томск, 7-11 апреля 2014 г.); XXIV Российской молодежной научной конференции «Проблемы теоретической и (Екатеринбург, 23-25 г.); экспериментальной химии» апреля 2014 Международной научно-практической конференции «Проблемы и перспективы развития химии, нефтехимии и нефтепереработки» (Нижнекамск, 25 апреля Международной (IX Всероссийской) научно-практической 2014 г.); І конференции «Нефтепромысловая химия» (Москва, 26 июня 2014 г.); XV International scientific conference «High-tech in chemical engineering-2014» (Moscow, 22-26 September 2014), 69 Международная молодежная научная конференция «Нефть и газ-2015» (Москва, 14-16 апреля 2015), XVI International scientific conference «High-tech in chemical engineering-2016» (Moscow, 10-15 October 2016).

Публикации. По теме диссертационного исследования опубликовано 14 научных работ, 4 из которых являются статьями в рецензируемых научных журналах, а также тезисы докладов на студенческих, всероссийских и международных конференциях.

Личный вклад автора заключается в постановке цели работы и задач исследования, выполненных совместно с научным руководителем. Результаты, представленные в диссертационной работе, получены автором самостоятельно, либо при его непосредственном участии.

Объем и структура работы. Диссертационная работа включает в себя введение, четыре главы, заключение и список литературы. Работа описана на 148 страницах, включая 21 таблицу и 57 рисунков. Список литературы содержит 161 наименование.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность и практическая значимость диссертационной работы, сформулированы цель и задачи исследования, изложены научная новизна и положения, выносимые на защиту.

Первая глава посвящена обзору научных, научно-технических И публикаций диссертационной работы. Обобщены патентных по теме литературные данные по применению синтетических полимеров И биополимеров, растворов ПАВ для увеличения вязкости растворов HCl различной концентрации. Рассмотрены физико-химические свойства вязких кислотных растворов и данные по их применению для обработки насыщенных углеводородами карбонатных пластов для создания высокопроводящих фильтрационных каналов. На основании данных опытно-промысловых и работ лабораторных описаны условия формирования различных фильтрационных каналов – конических, червоточин, разветвленных. В заключение главы приведены выводы по литературному обзору.

главе второй описаны приборы Bo И методики проведения экспериментальных исследований. Вязкость кислотных растворов определена на 17-ти скоростном герметизированном динамическом вискозиметре НТНР-5550. Определение межфазного натяжения о на границе нефть – кислотный раствор проведено на тензиометре IFT-820-Р. Установление фазового состава карбонатных образцов осуществлено на дифрактометрах Дрон-7 и Rigaku Ultima IV в Си К_а-излучении, Ni-фильтр, для обработки рентгенограмм использованы программные комплексы РФА – PDWin 4.0, Powder 2.0. Микроструктурный анализ проведен для установления фазового состава сколов образцов до и после кислотного воздействия с применением растровой электронной микроскопии. Измерение убыли массы карбонатных образцов при взаимодействии с растворами кислот проведено с использованием поверенных аналитических весов. Размеры мицелл амфолитного поверхностно-активного вещества (АПАВ) в растворе соляной кислоты определены на лазерном дифрактометре Microtrac Zetatrac. Фильтрация растворов кислот через модели пласта осуществлена на фильтрационной системе ACRS-831Z в соответствии с МВИ 11-11-2003 и ОСТ 39-235-89 при внутрипоровом давлении $P_{\text{пор}} = 10$ МПа, всестороннем давлении обжима $P_{rop} = 27$ МПа, температуре t = 12 °C, минерализации воды $C_{\text{NaCl}} = 150$ г/л. Перед проведением фильтрационных исследований из образцов керна карбонатного состава экстрагирована нефть. Затем установлены коэфициенты пористости, проницаемости и остаточной водонасыщенности кернового материала. Изображение флюидопроводящих каналов после проведения кислотной обработки получены на рентгенмикротомографе SkyScan 1172, при токе анода 170 мкА, источнике рентгеновского излучения 70 кВ.

В третьей главе представлены результаты: реологических исследований вязких растворов HCl (12 мас. %); изучения кинетики взаимодействия растворов кислот различной вязкости с кальцитом CaCO₃ и доломитом Ca_{1,16}Mg_{0,84}(CO₃)₂, аппроксимации экспериментальных данных кинетическими уравнениями, вычисления скоростей кислотно-карбонатного взаимодействия, определения коэффициентов массопередачи $K_{\rm M}$ и величин энергий активации реакций $E_{\rm a}$ растворов кислот с карбонатными минералами; влияния загустителей на межфазное натяжение раствора соляной кислоты на границе с нефтью.

Вязкие водные растворы, содержащие 12 мас. % HCl, получены добавлением АПАВ карбоксибетаина (1-10 мас. %), биополимеров ксантана (0,05-1,5 мас. %) и склероглюкана (0,1-1,5 мас. %), синтетического полимера полиакриламида ПАА (0,1-3 мас. %) (табл. 1). Динамическая вязкость раствора HCl в термобарических условиях (t = 12 °C, P = 10 МПа) и скорости сдвига $\dot{\gamma} =$

25 с⁻¹ при внесении 0,1-3 мас. % ПАА повышается до $\eta = 12,68-394,23$ мПа·с; 0,1-1,25 мас. % ксантанта до $\eta = 16,05-432-24$ мПа·с; 1-10 мас. % карбокисбетаина до $\eta = 15,28-149,83$ мПа·с; 1-1,25 мас. % склероглюкана до $\eta = 21,6-346,03$ мПа·с. Вязкость растворов снижается по мере увеличения скорости сдвига, что свидетельствует о приобретении вязкими растворами HCl псевдопластических свойств (рис. 1).

Безразмерный показатель неньютоновского поведения жидкости n (1) характеризует способность жидкости к отклонению от прямолинейного движения. Чем меньше значение показателя n, тем более жидкость склонна к отклонению движения.

$$\tau = K \cdot \dot{\gamma}^n$$
, где (1)

где τ – напряжение сдвига, Па; *K* – мера консистенции жидкости, Па·с; $\dot{\gamma}$ – скорость сдвига с⁻¹, *n* – показатель неньютоновского поведения жидкости.

Таблица 1

N⁰	Название	Класс	Формула
1	Ксантан	Биополимер	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
2	Склероглюкан	Биополимер	
3	Карбоксибетаин	Амфолитный ПАВ	$\begin{array}{c} H_{3}C \\ R \\ \oplus \\ R \\ = C_{10}H_{21} - C_{18}H_{37} \\ \end{array} \\ \bigcirc \Theta \\ O \\ O$
4	ПАА	Синтетический полимер	

Загустители раствора соляной кислоты ($C_{\text{HCl}} = 12$ мас. %)

Значения показателей неньютоновского поведения жидкости для растворов HCl (12 мас. %) с добавлением 1-10 мас. % карбоксибетаина составили n = 0,654-0,391. Растворы HCl с добавлением 0,05-1,5 мас. % ксантана и 0,1-2 мас. % склероглюкана имеют наименьшие показатели неньютоновского поведения жидкости, которые составили n = 0,687-0,380 и n = 0,578-0,276 соответственно. Наибольшие показатели n отмечены для растворов HCl с добавлением 0,2-3 мас. % ПАА и составили n = 0,704-0,416.

Для проведения кислотных обработок карбонатных пластов используют вязкие растворы HCl с динамической вязкостью в пределах $\eta = 100-120$ мПа·с (при скорости сдвига $\dot{\gamma} = 25$ с⁻¹) [4] и показателем неньютоновского поведения жидкости n < 0.6. По результатам реологических исследований, выбраны

растворы с реологическими характеристиками, наиболее подходящими для проведения кислотной обработки карбонатных пластов (табл. 2).

Рис. 1. Изменение вязкости растворов соляной кислоты ($C_{\text{HCl}} = 12 \text{ мас. \%}$) от скорости сдвига при добавлении: а) 1-10 мас. % карбоксибетаина; б) 0,05-1,5 мас. % ксантана; в) 0,1-2 мас. % склероглюкана; г) 0,2-3 мас. % ПАА.

Таблица 2

	1		1 1
Номер №	Раствор соляной кислоты (<i>C</i> _{HCl} = 12 мас. %) с добавлением	Показатель п	Динамическая вязкость раствора, мПа·с (при γ́ = 25;50;75;100 с ⁻¹)
1	0,5 мас. % ксантана	0,378	131,51; 84,39; 70,37; 62,52
2	0,5 мас. % склероглюкана	0,424	107,51; 69,63; 56,13; 48,60
3	6,5 мас. % карбоксибетаина	0,449	99,05; 62,13; 51,42; 46,37
4	0,8 мас. % ПАА	0,547	112,89; 79,2; 67,46; 58,53

Реологические характеристики вязких растворов HCl

Разработка месторождений Восточной Сибири осложнена высокой минерализацией пластовой воды. Для установления влияния минерализации пластовой воды на реологические характеристики растворов соляной кислоты с повышенной вязкостью, в лабораторных условиях смоделированы условия залегания пласта с $t_{\text{пл}} = 12$ °C, $P_{\text{пл}} = 10$ МПа, $C_{\text{NaCl}} = 150$ г/л.

Увеличение минерализации раствора до $C_{\text{NaCl}} = 150$ г/л не приводит к ухудшению структурно-механических свойств растворов № 1, № 2, № 3 табл. 1. Динамическая вязкость раствора ПАА № 4 табл. 1 при минерализации раствора $C_{\text{NaCl}} = 150$ г/л снижается до $\eta = 23,85-13$ мПа·с.

Снижение межфазного натяжения σ на границе нефть-кислотный раствор способствует вытеснению углеводородных флюидов. Значение межфазного

натяжения на границе нефть – раствор HCl (12 мас. %) составляет $\sigma = 35,9$ мH/м. Добавление загустителей в водные растворы соляной кислоты ($C_{HCl} = 12$ мас. %) снижает их межфазное натяжение на границах с нефтью до значений $\sigma = 12,88 - 0,28$, что составляет снижение в 2,7-128,2 раз (рис. 2).

Рис. 2. Межфазное натяжение растворов соляной кислоты различной вязкости на границе с нефтью при различной концентрации хлорида натрия. Примечание: раствор соляной кислоты $(C_{HCI} = 12 \text{ мас. }\%)$ с добавкой: 1 - 0,5 мас. % ксантана; 2 - 0,5 мас. % склероглюкана; 3 - 6,5 мас. % карбоксибетаина; 4 - 0,8 мас. % ПАА; 5 - 3 мас. % Неонола РХП-20.

Максимальное снижение межфазного натяжения σ = 0,28-0,21 мН/м наблюдается для раствора соляной кислоты с 6,5 мас. % карбоксибетаина (рис. 2). Столь значительное снижение межфазного натяжения определяет высокую способность раствора проникать в нефтенасыщенный пласт.

Стандартный раствор, применяемый в практике проведения кислотных обработок карбонатных пластов HCl (12 мас. %) с добавлением ПАВ Неонол РХП-20 (3 мас. %) (№ 5, рис.2) имеет значение межфазного натяжения на границе с нефтью $\sigma = 0,38$ мH/м. При увеличении минерализации до $C_{\text{NaCl}} = 150$ г/л значение межфазного натяжения составило $\sigma = 1,14$ мH/м.

Вязкие кислотные растворы, содержащие ПАА и биополимеры, обладают меньшей поверхностной активностью в сравнении с кислотными растворами, содержащими ПАВ. Для кислотных растворов № 1 и № 2 значения межфазного натяжения при минерализации воды $C_{\text{NaCl}} = 150$ г/л составили $\sigma = 8,01$ мН/м и $\sigma = 8,56$ мН/м соответственно. Значение межфазного натяжения раствора соляной кислоты с 0,8 мас. % ПАА при увеличении минерализации до $C_{\text{NaCl}} = 150$ г/л уменьшилось с $\sigma = 12,88$ мН/м до $\sigma = 6,25$ мН/м.

Растворение карбонатов CaCO₃ и CaMg(CO₃)₂ в растворе соляной кислоты протекает с выделением газообразного CO₂:

$$CaCO_3 + 2HC1 \rightarrow CaC1_2 + H_2O + CO_2\uparrow$$
(2)

$$CaCO_3 \cdot MgCO_3 + 4HC1 \rightarrow CaC1_2 + MgC1_2 + 2H_2O + 2CO_2 \uparrow$$
(3)

Изучена скорость взаимодействия вязких минерализованных растворов НСІ № 1 и № 4 табл. 4 с минералом доломитом. В качестве раствора сравнения использован раствор HCl (12 мас. %, х.ч.) № 6 табл. 4. Выбран однородный образец керна, состоящий более чем на 95 мол. % из доломита. Содержание в образце катионов кальция установлено магния И методом рентгенофлуоресцентного анализа: Ca_{1.16}Mg_{0.84}(CO₃)₂; параметры элементарной ячейки a = 4,8087 Å, c = 16,0151 Å. Образцы доломита, выпиленные в виде цилиндров с радиусами оснований r = 1,5 см и высотами l = 2 см характеризовались низкой проницаемостью k < 2 мкм²·10⁻³, что определило протекание реакции (3) преимущественно в слое соприкосновения образцов с растворами HCl различной вязкости. Опыты проведены в условиях t = 12 °C, P = 0,101 МПа. Доломит Ca_{1,16}Mg_{0,84}(CO₃)₂ взят в значительном избытке. Скорости реакций рассчитаны по уравнению:

$$V_{p_i} = \frac{m_i \cdot 10^4}{S_{o\delta p_i} \cdot t_i}, \, \text{где}$$
(4)

 $V_{\rm pi}$ – скорость реакции, г/м²·ч; $m_{\rm i}$ – масса выделяющегося CO₂, г; $S_{\rm oбp.}$ – площадь образца, см²; $t_{\rm i}$ – время, ч.

$$S_{o \delta p} = 2 \cdot \pi \cdot r(h+r),$$
 где (5)

h – высота цилиндра, см; r – радиус основания цилиндра, см.

Рис. 3. Дифрактограммы (а,б) и изображения сколов образцов (в,г) кальцита CaCO₃ (а,в) и доломита Ca_{1,16}Mg_{0,84}(CO₃)₂ (в,г).

Таблица 3

Результаты рентгеноспектрального анализа распределения элементов в карбонатных минералах

Минерал/элемент		C	0	Mg	Ca	Ca/Mg
Кальцит	001	19,96	44,92	_	35,11	_
	002	23,92	44,52		31,56	_
	003	18,79	45,79		35,42	_
	004	18,61	42,74		38,02	_
	001	19,23	46,03	14,73	20,00	1,36
Доломит	002	18,86	46,83	14,36	19,95	1,39
	003	17,54	46,34	14,23	21,90	1,53

На І-ой стадии взаимодействия доломита с водным раствором HCl (12 мас. %, х.ч.) (рис. 4б) наблюдалось возрастание скорости реакции с $V_p = 2396$ г/м²·ч до $V_p = 4073$ г/м²·ч. Выделены факторы изменения скорости реакции: индукционное накопление объема глобулы CO₂ для ее последующего отрыва; увеличение удельной поверхности доломита Ca_{1,16}Mg_{0,84}(CO₃)₂; конвективное перемешивание раствора кислоты, движущимися глобулами CO₂.

На II-ой стадии уменьшение скорости реакции до $V_p = 2676 \text{ г/м}^2 \cdot \text{ч}$ полностью коррелирует с уменьшением концентрации HCl вследствие ее выработки.

Скорость реакции вязкого кислотного раствора № 1 табл. 4 с доломитом Ca_{1,16}Mg_{0,84}(CO₃)₂ в минерализованной растворе изменилась незначительно.

Раствор HCl (12 мас. %) с 0,8 мас. % ПАА при высокой минерализации $(C_{\text{NaCl}} = 150 \text{ г/л})$ становится неустойчивым, что приводит к увеличению средней скорости реакции с $V_p = 474 \text{ г/m}^2 \cdot \text{ч}$ до $V_p = 816 \text{ г/m}^2 \cdot \text{ч}$ (табл. 4). В минерализованном растворе происходит выпадение полимера в виде самостоятельной фазы. Образование осадков в пластовых условиях может стать причиной кольматации пространства коллектора, поэтому кинетические характеристики реакции раствора № 4 с кальцитом и доломитом устанавливать нецелесообразно.

Рис. 4. Убыли масс образцов и скорости взаимодействия кислотных растворов с доломитом Ca_{1.16}Mg_{0.84}(CO₃)₂ в условиях высокой (*C*_{NaCl} = 150 г/л) и отсутствия минерализации.

Таблица 4

Средние скорости реакций доломита $Ca_{1,16}Mg_{0,84}(CO_3)_2$ с кислотными растворами при отсутствии и высокой минерализации ($C_{NaCl} = 150$ г/л)

No	Состав кислотного	$V_{ m cped}$ на	І-ом у	частке, г/п	м ² ·ч	$V_{\rm cped}$ на II-ом участке, г/м ² ·ч			
	раствора	0 г/л NaCl	$\frac{V_{HCl}}{V_n}$	150 г/л NaCl	$rac{V_{HCl}}{V_n}$	0 г/л NaCl	$rac{V_{HCl}}{V_n}$	150 г/л NaCl	$\frac{V_{HCl}}{V_n}$
6	HCl (х.ч.) 12 мас. %	3544	1	3478	1	2676	1	2649	1
4	HCl (12 %) + ПАА (0,8 %)	474	7,5	816	4,3	483	5,5	877	3
1	HCl (12 %) + Ксантан (0,5 %)	433	8,2	486	7,1	419	6,4	495	5,3

Фундаментальные характеристики реакций взаимодействия растворов HCl с карбонатными минералами константа скорости реакции k, энергия активация E_a используются при проектировании кислотных обработок и кислотных гидроразрывов карбонатных пластов. В условиях проведения кислотных обработок карбонатных пластов, реакция взаимодействия растворов

HCl с карбонатными минералами протекают преимущественно в диффузионном и диффузионно-конвективном режиме [5]. Роль константы скорости реакции *k*, в химических реакциях лимитирующихся диффузией, выполняет коэффициент массопередачи *K*_м, для определения которого используются следующие уравнения:

$$V_{\rm p} = \frac{\Delta m}{S\tau} = K_M (C_0 - C) \tag{6}$$

$$K_M = \frac{V}{S\tau} ln \frac{C_0}{C'},\tag{7}$$

где Δm – изменение массы образца карбонатной породы, г; *S* – площадь образца карбонатной породы, см²; τ – время реакции, сек; $K_{\rm M}$ – коэффициент массопередачи, см/сек; C_0 – начальная концентрация кислоты, моль/дм³; *C* – концентрация кислоты в момент времени τ , моль/дм³; *V* – объем кислотного раствора, см³; $V_{\rm p}$ – скорость реакции, г/см² сек.

Рис. 5. Результаты обработки по уравнениям (6) (а), (7) (б) кинетических кривых растворения кальцита CaCO₃ (в) в растворах HCl различной вязкости.

1) HCl (12 мас. %) + Ксантан (0,5 мас. %); 2) HCl (12 мас. %) + Склероглюкан (0,5 мас. %); 3) HCl (12 мас. %) + Карбоксибетаин (6,5 мас. %); 5) СКО + ПАВ (HCl – 12 мас. %; Неонол РХП-20 – 3 мас. %); 6) HCl (12 мас. %, х.ч.).

Кинетические кривые растворения кальцита CaCO₃ в кислотных растворах № 1, № 2, № 3, № 5, № 6 рис. 5в аппроксимированы уравнениями (6) (рис. 5а) и (7) (рис. 5б). Согласно уравнению (6), по оси абсцисс отложены значения C_0 -C, по оси ординат значения $\Delta m/S\tau$. Согласно уравнению (7), по оси абсцисс отложены значения $1/ln(C_0/C)$, по оси ординат значения $V/S\tau$. Значение угла наклона линии, аппроксимирующей отложенные значения, соответствует коэффициенту массопередачи $K_{\rm M}$.

Значения величин достоверностей аппроксимации при описании реакций взаимодействия кальцита $CaCO_3$ с растворами кислот по уравнениям (6) и (7) составили $R^2 = 0,068-0,88$ и $R^2 = 0,968-0,997$ соответственно. Очевидно

значительное различие величин R^2 . Принципиальное отличие уравнения (6) от (7) состоит в том, что отношение концентрации кислоты C/C_0 в уравнении (7) входит в логарифмическую зависимость. В уравнении (6) используется лишь изменение концентраций в линейной форме. Изменение концентрации кислоты C от времени реакции т изменяется существенно нелинейно и этим объясняется высокие значения достоверностей аппроксимации при использовании уравнения (7). Опираясь на значения R^2 , сделан вывод о невозможности применения уравнения (6) для описания реакций взаимодействия карбонатных минералов с минерализованными растворами HCl различной вязкости. Значения коэффициентов массопередачи K_M , вычисленные по уравнению (7), являются достоверными.

Для определения коэффициентов массопередачи $K_{\rm M}$ и энергии активации $E_{\rm a}$ проведено растворение цилиндрических образцов кальцита CaCO₃ и доломита Ca_{1,16}Mg_{0,84}(CO₃)₂ в минерализованных ($C_{\rm NaCl} = 150$ г/л) растворах HCl (12 мас. %) различной вязкости (табл. 5). Коэффициенты массопередачи $K_{\rm M}$ определены по уравнению (7), энергии активаций реакций $E_{\rm a}$ по уравнению Аррениуса:

$$K = Aexp(-E_a/RT), \tag{8}$$

где $K_{\rm M}$ – коэффициент массопередачи, см/сек; A – предэкспоненциальный множитель; $E_{\rm a}$ – энергия активации реакции, Дж/моль; R – универсальная газовая постоянная, кДж/кмоль·К; T – температура, К.

Таблица 5

Коэффициенты массопередачи $K_{\rm M}$ и кажущиеся энергии активаций $E_{\rm a}$ реакций карбонатов CaCO₃, Ca_{1,16}Mg_{0,84}(CO₃)₂ с минерализованными растворами HCl

	\mathbf{D}_{0}	pa	створени	ie CaCO	3	растворение Ca _{1,16} Mg _{0,84} (CO ₃) ₂			
N⁰	Pacibop 12 Mac. 76	$K_{\rm M} \cdot 10^{-3}, {\rm c}^{-1}$			F	$K_{\rm M} \cdot 10^{-3}, {\rm c}^{-1}$			F
	псі с добавлением	10 °C	17 °C	25 °C	\boldsymbol{L}_{a}	10 °C	17 °C	25 °C	L_a
1	0,5 мас. % ксантана	0,27	0,34	0,37	14,7	0,17	0,2	0,22	11,7
2	0,5 мас. % склероглюкана	0,39	0,47	0,52	13,8	0,32	0,35	0,42	13,2
3	6,5 мас. % карбоксибетаина	0,16	0,19	0,21	10,3	0,1	0,12	0,13	11,5
5	3 мас. % Неонол РХП-20	1,17	1,34	1,63	15,6	0,39	0,46	0,54	15,3
6	химически чистый	4,14	5,38	6,21	18,9	0,63	0,76	0,88	15,2

различной вязкости в квазистатических условиях при t = 10-25 °C.

Величины коэффициентов массопередачи при взаимодействии кальцита CaCO₃ с минерализованным раствором HCl (12 мас. %, х.ч.) № 6 в табл. 5 составили $K_{\rm M} = 4,14 \cdot 10^{-3}$ см/сек, $K_{\rm M} = 5,38 \cdot 10^{-3}$ см/сек и $K_{\rm M} = 6,21 \cdot 10^{-3}$ см/сек, при температурах t = 10 °C, 17 °C и 25 °C соответственно. Кажущаяся энергия активации определенная для данной реакции равна $E_{\rm a} = 18,9$ кДж/моль (табл. 5).

Поскольку энергия активации при взаимодействии минерализованного раствора HCl (12 мас. %, х.ч.) с кальцитом CaCO₃ E_a<20 кДж/моль, сделан

вывод о протекании кислотно-карбонатного взаимодействия в диффузионном режиме. При $E_a>40$ кДж/моль реакция контролируется непосредственно стадией химического превращения. Промежуточному значению энергии активации $20 < E_a < 40$ кДж/моль соответствует диффузионно-химическая область [6].

Повышенная вязкость растворов HCl (12 мас. %) с добавлением 0,5 мас. % ксантана, 0,5 мас. % склероглюкана, 6,5 мас. % карбоксибетаина (\mathbb{N}_{2} 1, \mathbb{N}_{2} 2, \mathbb{N}_{2} 3 в табл. 5 соответственно) приводит к существенному снижению (в 10-29 раз) коэффициентов массопередачи $K_{\rm M}$ реакций взаимодействия вязких растворов HCl с кальцитом CaCO₃ (табл. 5).

Кажущиеся энергии активации реакций, определенные для взаимодействия кальцита СаСО₃ с вязкими растворами № 1, № 2, № 3 табл. 5 составили $E_a = 14,7$ кДж/моль, $E_a = 13,8$ кДж/моль и $E_a = 10,3$ кДж/моль соответственно. Снижение энергии активации реакций E_a объясняется изменением характера конвекции реакционной смеси глобулами СО₂. При реакции кальцита CaCO₃ с растворами HCl низкой вязкости интенсивный отвод глобул углекислого газа CO₂ с реакционной поверхности приводит к усиленной реакционной смеси. Диффузионный слой, препятствующий конвекции протеканию реакции между кислотой и породой, становится тоньше. Вследствие чего режим протекания реакции смещен в сторону диффузионнохимической области. Увеличение вязкости раствора приводит к замедлению конвекции реакционной смеси глобулами СО2. В таких условиях реакция протекает практически в статическом режиме и контролируется исключительно диффузией.

Адсорбционная активность доломита $Ca_{1,16}Mg_{0,84}(CO_3)_2$ в отношении высокополярного катиона H⁺ меньше чем у кальцита CaCO₃, вследствие наличия в его катионной подрешетке катионов Mg^{2+} . По сравнению с кальцитом, доломит имеет повышенную энергию кристаллической решетки U_p , которая рассчитана по уравнению Капустинского-Яцимирского:

$$U_{p} = 1201,16 \frac{\sum n \cdot z^{+} z^{-}}{\sum (r_{+} + r_{-})} \left[1 - \frac{0.345}{\sum (r_{+} + r_{-})} + 0,0087 \sum (r_{+} + r_{-}) \right], \tag{9}$$

где r_{-} и r_{+} – радиусы анионов и катионов, Å; $U_{\rm p}$ – энергия кристаллической решетки, кДж/моль; z^{-} и z^{+} – заряды анионов и катионов.

Для расчета энергии кристаллической решетки U_p использована система ионных радиусов Шеннона и Прюитта, согласно которой радиус аниона $CO_3^{2^-} r_1 = 1,85$, радиус катиона $r_+ Mg^{2^+}$ (КЧ 6) = 0,72 Å, радиус катиона Ca^{2^+} (КЧ 6) $r_+ = 1,00$ Å. Энергия кристаллической решетки U_p имеет значение для кальцита $CaCO_3 U_p = 3041$ кДж/моль, для доломита $Ca_{1,16}Mg_{0,84}(CO_3)_2 U_p = 3487$ кДж/моль.

Различие значений энергии кристаллической решетки, меньшая ионность доломита по сравнению с кальцитом определяют более низкие значение коэффициентов массопередачи $K_{\rm M}$ (в 6-7 раз) в реакциях доломита с водными растворами HCl без загустителей (табл. 5).

Величины кажущейся энергии активации при взаимодействии кислотных растворов № 6 и № 5 с доломитом $Ca_{1,16}Mg_{0,84}(CO_3)_2$ составили $E_a = 15,2$ кДж/моль и $E_a = 15,3$ кДж/моль соответственно. Увеличение вязкости раствора HCl (12 мас. %) биополимерами и раствором АПАВ привело к снижению кажущейся энергии активации до $E_a = 11,7$ кДж/моль, $E_a = 13,2$ кДж/моль и $E_a = 11,5$ кДж/моль для реакций доломита $Ca_{1,16}Mg_{0,84}(CO_3)_2$ с растворами № 1, № 2, № 3 соответственно.

Различия между значениями коэффициентов массопередачи *K*_M для реакций вязких кислотных растворов с кальцитом CaCO₃ и доломитом Ca_{1,16}Mg_{0,84}(CO₃)₂ невелики (табл. 5).

Качественно установлено изменение содержания в образце доломита в реакции с HCl формальных составляющих MgCO₃ и CaCO₃. Исследование проведено на образце состава $Ca_{0.92}Mg_{1.08}(CO_3)_2$. Содержание в образце $CaCO_3$, MgCO₃ определяли методом дифференциальной сканирующей колориметрии. Для исследования пробу отбирали с поверхности образца, контактирующего с растворами HCl различной вязкости. В пределах ошибок определений не зафиксировано изменений состава образца Ca_{0.92}Mg_{1.08}(CO₃)₂ при его взаимодействии с раствором HCl (12 мас. %, х.ч.). Взаимодействие вязкого раствора HCl (12 мас. %) с добавлением 6,5 мас. % карбоксибетаина вызвало незначительное уменьшение содержания в поверхностном слое образца формальной составляющей СаСО3. Поверхностный слой после 30 минут протекания реакции имел состав Ca_{0.87}Mg_{1.13}(CO₃)₂. Следует ожидать, что протекание реакции в пластовых условиях будет приводить к существенно большему растворению в доломите компонента CaCO₃, чем MgCO₃.

Рис. 6. Образцы доломита после взаимодействия с раствором HCl (12 мас. %, х.ч.) (а, б) и HCl (12 мас. %) с добавлением 0,5 мас. % ксантана (в, г).

Установлено изменение зеренной характера структуры образца Ca_{1.16}Mg_{0.84}(CO₃)₂ после его взаимодействия с HCl (х.ч.) и вязкими растворами HCl. В результате реакции с HCl (х.ч.) на поверхности образца образуются объемные поверхностные поры. Вязкие растворы НСІ взаимодействуют с образцом фронтально и равномерно (рис. 6).

По мере нейтрализации растворов HCl с добавлением загустителей возрастает их вязкость. Вязкость раствора HCl

(12 мас. %) с добавлением 6,5 мас. % карбоксибетаина увеличилась от $\eta = 99,05$ мПа·с до $\eta = 641$ мПа·с, при $\dot{\gamma} = 25$ с⁻¹. Размеры мицелл до и после нейтрализации кислотного раствора определены методом лазерной дифрактометрии на Microtrac Zetatrac (рис. 7). В исходном вязком растворе HCl растворе более 60 % мицелл раствора имеют размер в пределах 1-10 нм (рис.

6а), предполагаемая форма данных мицелл – сферическая. Агрегаты с размерами 200-1200 нм (40 %), предположительно, представляют собой переплетенные стержнеобразные мицеллы, присутствие которых обеспечивает повышенную вязкость раствора.

Рис. 7. Размеры мицелл раствора HCl (12 мас. %) + Карбоксибетаин (6,5 мас. %) до (а) и после (б) взаимодействия с доломитом $Ca_{1,16}Mg_{0,84}(CO_3)_2$.

После полной выработки HCl кардинально изменяются размеры мицелл. Все мицеллы имеют сопоставимые размеры в интервале 2000-7000 нм (рис. 7б). Изменение размеров и формы мицелл коррелирует с увеличением вязкости раствора. Вероятно, увеличение содержания в растворе катионов Ca²⁺ и Mg²⁺ отталкивание гидрофильных уменьшает электростатическое групп на поверхности сферических мицелл, что приводит к уменьшению расстояния между мицеллами и их увеличению. Существенное увеличение вязкости позволяет предположить, что изменилась также форма мицелл на стержнеобразную [7].

Четвертая глава посвящена исследованию фильтрации растворов HCl различной вязкости в моделях карбонатного пласта.

Использованы образцы образованные керна, преимущественно доломитом каверно-порового строения. Цилиндрические образцы керна насыщенные высокоминерализованной водой ($C_{
m NaCl}$ 150 г/л) имели = газопроницаемость по гелию в интервале $K = 0,061 \cdot 0,171$ мкм², пористость $\emptyset =$ 10,68-22,47 %, размеры длины и диаметра l = d = 3 см. Модель пласта составлялась из 3 образцов. Скорость подачи (расход фильтрации) растворов в модель пласта составляла Q = 0.25 см³/мин.

Фильтрация растворов кислот проведена по следующей методике: на первом этапе через модель карбонатного пласта прокачена модель пластовой нефти и определена проницаемость по нефти (K_1), после чего в модель пласта закачен фильтрат бурового раствора и определена фазовая проницаемость по нефти после обработки фильтратом бурового раствора (K_2). На следующем этапе проведена кислотная обработка, определение проницаемости модели пласта по нефти (K_3) и расчет коэффициента повышения проницаемости относительно фильтрата бурового раствора (K_3/K_2 -1)·100%.

Закономерности изменений давления в моделях пласта в автоматическом режиме (фильтрационная система ACRS-831Z) фиксируются в виде

17

зависимости градиентов давления от количества прокаченных флюидов (рис. 8a, 8б).

При закачке раствора HCl (12 мас. %, х.ч.) (№ 6 в табл. 6) в модель карбонатного пласта наблюдается повышение градиента давления, что связано со снижением проницаемости керна. Микроагрегаты карбонатного коллектора, отрывающиеся от скелета горной породы при закачке раствора, осаждаются в поровом пространстве. Происходит частичная кольматация коллектора, что приводит к увеличению градиента давления. При дальнейшей закачке кислоты, карбонатного состава микроагрегаты растворяются, канал растворения расширяется, как следствие происходит снижение градиента давления. На последнем этапе кислотной обработки происходит образование сквозного канала фильтрации. В результате обработки карбонатной породы раствором № 6 явилось формирование 1-2 неразветвленных каналов фильтрации (рис. 8в). a)100

8. Фильтрация Рис. через модель карбонатного пласта раствора соляной кислоты $(C_{\rm HCl} = 12 \text{ mac. \%, x.ч.})$ (а), раствора соляной кислоты ($C_{\rm HCl} = 12$ мас. %) с добавлением склероглюкана (0.5)мас. %) (б) и торцы образцов керна, слагавшие модели пласта после фильтрации раствора HCl (12 мас. %, х.ч.) (в), раствора HCl с добавлением склероглюкана (0.5)мас. %) (г).

Невысокая скорость взаимодействия, при высокой проникающей способности растворов HCl (12 мас. %) с добавлением 0,5 мас. % ксантана, 0,5 мас. % склероглюкана, 6,5 мас. % карбоксибетаина (№ 1, № 2, № 3 в табл. 6 соответственно) приводит при их закачке в модель пласта к увеличению градиента давления (>110 атм/м) (рис. 7б), что связано с перераспределением потока нагнетаемых растворов и низкой скоростью реакции с карбонатными минералами. Перераспределение потоков растворов приводит к появлению системы высокопроницаемых близрасположенных фильтрационных каналов (рис. 7г). При закачке раствора HCl с добавлением 0,8 мас. % ПАА (№ 4 в табл. 6) в модель пласта не произошло формирование сквозного канала фильтрации, что связано с кольматацией коллектора негидрализованными остатками ПАА.

Для установления формы каналов фильтрации образцы керна после обработки растворами кислот проанализированы с помощью исследовательского комплекса на базе рентген-микротомографа SkyScan 1172.

Отмечено формирование каналов различной геометрии и разветвленности (рис. 9). Высокая интенсивность взаимодействия водного раствора соляной кислоты ($C_{\rm HCl} = 12$ мас. %, х.ч.) с карбонатной породой приводит к образованию каверны и одного неразветвленного канала фильтрации (рис. 9а). Форма данного канала – коническая. Локальный характер подобного канала чаще всего не вызывает интенсивный приток флюида и является причиной неуспешных кислотных обработок.

Образование червоточины происходит при обработке модели карбонатного пласта раствором HCl с добавлением 0, 5 мас. % ксантан (рис. 9б), вследствие повышенной вязкости кислотного раствора и пониженной скорости кислотно-карбонатного взаимодействия. Форма канала фильтрации, образованного в карбонатной породе раствором HCl с добавлением 0,5 мас. % склероглюкана (рис. 9в), характерна для геометрии разветвленного канала. Предполагается, что доминирующий канал образован слиянием множества микроскопических каналов. Точную геометрию канала, сформированного в модели карбонатного пласта раствором HCl с добавлением 6,5 мас. % карбоксибетаина (рис. 9г) установить затруднительно.

Рис. 9. Изображения каналов фильтрации сформированных в моделях пласта раствором х.ч. 12 мас. % соляной кислоты (а) и раствором HCl с добавлением: б) 0,5 мас. % ксантана; в) 0,5 мас. % склероглюкан; г) 6,5 мас. % карбоксибетаина.

Геометрическая структура фильтрационных каналов определяется отношением скорости взаимодействия кислоты и породы к скорости нагнетания раствора кислоты. Данное называют числом Дамкелера, соотношение которое позволяет подбирать условия ДЛЯ проведения наиболее эффективной кислотной обработки формирования за счет каналов необходимой структуры. Число Дамкелера рассчитывается по формуле [8]:

$$N_{D_a} = \frac{\pi \, d \, lk}{Q} \tag{9}$$

где k – константа скорости реакции, см/сек; Q – расход фильтрации флюида, см³/сек; l – длина канала растворения, см; d – диаметр червоточины, см.

Каналам растворения, обеспечивающим наибольший приток флюида из пласта, при минимальных затратах кислотного раствора – червоточинам, соответствуют числа Дамкелера в

пределах $N_{\text{Da}} = 0,2-0,6$. Для конических каналов, образующихся при высокой скорости реакции кислоты с горной породой и низкой скорости подачи раствора в коллектор, число Дамкелера $N_{\text{Da}} > 0,6$. При противоположных условиях – низкая скорость реакции кислоты с породой и высокая скорость

подачи раствора в коллектор, характерно образование разветвленных каналов фильтрации, для которых значение числа Дамкелера $N_{\text{Da}} < 0,2$ [9].

Вычисленные числа Дамкелера для каналов сформированных растворами N_{2} 6 и N_{2} 5 (табл. 6) в моделях карбонатного пласта составляют $N_{Da} = 1,16$ и $N_{Da} = 0,91$. Исходя из значений чисел Дамкелера подтверждено образование конических каналов фильтрации.

Вычисленные числа Дамкелера для каналов, образованных в моделях карбонатного пласта растворами HCl с добавлением 0,5 мас. % ксантана (\mathbb{N}_{2} 1), 0,5 мас. % склероглюкана (\mathbb{N}_{2} 2) и 6,5 мас. % карбоксибетаина (\mathbb{N}_{2} 3) составляют $N_{\text{Da}} = 0,32$, $N_{\text{Da}} = 0,08$ и $N_{\text{Da}} = 0,71$. Исходя из полученных значений чисел Дамкелера подтверждено формирование в модели карбонатного пласта червоточины раствором \mathbb{N}_{2} 1, разветвленного канала фильтрации раствором \mathbb{N}_{2} , конического канала фильтрации раствором \mathbb{N}_{2} 3. Анализ полученных данных определяет необходимость проведения фильтрационных испытаний вязких растворов HCl с целью установления скорости подачи, при которой будут формироваться каналы фильтрации типа червоточины.

Таблица 6

Результаты определения фазовой проницаемости по нефти модели карбонатного пласта до и после фильтрации фильтрата бурового и кислотных растворов при *P*_{гор} = 27 МПа, *P*_{пл} = 10

	D 10								
	Раствор 12		Xap	актеристик	и фильтрации				
No	мас.% HCl с	K 10 ⁻³	K 10 ⁻³	K 10 ⁻³		17	37		
	добавлением	$K_1 \cdot 10^{-1}$	$K_2 \cdot 10^{-1}$	$K_3 \cdot 10^{-1}$	K_{3}/K_{2}	и V 1,89 4,42 5,93 1,26 1,46 1,17	N _{Da}		
1	0,5 мас. %	99.01	20.27	× 1000	× 100	1.00	0.22		
1	ксантана	88,01	20,27	>1000	>100	1,89	0,52		
2	0,5 мас. %	81.20	37.05	>1000	>100	1 12	0.08		
2	склероглюкана	01,29	57,05	>1000	и фильтрации K_3/K_2 V >100 1,89 >100 4,42 >100 5,93 -216,2 1,26 >100 1,46 >100 1,17	0,08			
3	6,5 мас. %	68.00	26.81	>1000	>100	5.02	0.71		
5	карбоксибетаина	08,99	20,81	>1000	>100	V 1,89 4,42 5,93 1,26 1,46 1,17	5,75	0,71	
4	0,8 мас. %	20.11	21.62	<0.1	216.2	1.26			
4	ПАА	38,11	21,02	<0,1	-210,2	1,20	-		
5	3 мас. % Неонол	22.20	10.46	> 1000	> 100	1 46	0.01		
3	РХП-20	23,38	10,40	>1000	>100	1,40	0,91		
6	химически	22 57	11.26	> 1000	> 100	1 17	1 16		
0	чистый	52,57	11,30	>1000	>100	1,1/	1,10		

МПа, $t_{\Pi\Pi} = 12 \ ^{\circ}C$

Примечание: P_{rop} – всестороннее давление на скелет горной породы; P_{nn} – пластовое давление; t_{nn} – пластовая температура; V – число прокачанных поровых объемов кислоты до образования сквозного канала фильтрации, ед.; K_1 – начальная проницаемость модели пласта до обработки, мкм²; K_2 – проницаемость модели пласта после обработки фильтратом бурового раствора, мкм²; K_3 – проницаемость модели пласта после кислотной обработки, мкм²; K_3/K_2 – отношение проницаемостей K_3 и K_2 .

Построены зависимости числа поровых объемов, затраченных на формирование сквозного канала фильтрации растворами HCl с добавлением загустителей в модели карбонатного пласта, от скорости их сдвига в коллекторе и скорости подачи растворов в пласт (рис. 10а и 10б).

Рис. 10. Зависимости числа поровых объемов кислотных растворов до образования сквозного канала фильтрации в моделях карбонатного пласта от скорости подачи кислотных растворов в модель пласта (а) и скорости сдвига растворов в поровом пространстве породы (б).

Скорость сдвига вязких растворов HCl в поровом пространстве рассчитана для каждой модели карбонатного пласта по формуле [10]:

$$\dot{\gamma} = \frac{u}{\varrho L'} \tag{10}$$

где $\dot{\gamma}$ – скорость сдвига, с⁻¹; ϕ – пористость; L – характеристическая длина, м, которая находится, как $L = 0,05k_{\kappa}^{0.5}$, где k_{κ} – проницаемость керна, мкм²·10⁻³; u – скорость фильтрации, м/с, которая находится, как u = q/A, где q – скорость подачи кислотного раствора в модель пласта, м/с, A – средняя площадь поперечного сечения поры, м², $A = 1,1\cdot10^{-7}$ м².

Фильтрация раствора HCl (12 мас. %) с добавлением 6,5 мас. % карбоксибетаина через модель карбонатного пласта со скоростью подачи $Q = 0,05-0,25 \text{ см}^3/$ мин привела к образованию конических каналов фильтрации. На формирование сквозного канала фильтрации затрачено не менее V = 5 ед. поровых объемов кислотного раствора. При повышении скорости подачи кислотного раствора до $Q = 0,5 \text{ см}^3/$ мин результаты от воздействия на породу существенно изменились. На формирование сквозного канала фильтрации затрачен наименьший объем кислотного раствора V = 3,87 ед. (рис. 10а). При этом образуется червоточина, для которой число Дамкелера составило $N_{\text{Da}} = 0,49$. Данная скорость подачи является приемлемой для проведения кислотной обработки карбонатных пластов в промысловых условиях. Повышение скоростей подачи раствора в модель карбонатного пласта до $Q = 0,8-1,00 \text{ см}^3/$ мин привело к увеличению объема кислотного раствора для формирования сквозного канала фильтрации до V = 6,04-6,98 ед.

Схожая картина наблюдается при фильтрации растворов HCl (12 мас. %) с добавлением 0,5 мас. % ксантана (№ 1) и 0,5 мас. % склероглюкана (№ 2). Однако скорости подачи кислотных растворов, при которых образуются сквозные каналы фильтрации со структурой червоточины, оказались различны. Установлено, что для формирования червоточин в карбонатном пласте следует закачивать раствор № 1 со скоростью подачи Q = 0,25 см³/мин, раствор № 2 со скоростью Q = 0,2 см³/мин.

В результате проведения комплексного исследования растворов HCl с добавлением загустителей для проведения кислотных обработок карбонатных пластов рекомендованы растворы следующих составов: 12 мас. % HCl с добавлением 0,5 мас. % ксантана; 12 мас. % HCl с добавлением 0,5 мас. % склероглюкана; 12 мас. % HCl с добавлением 6,5 мас. % карбоксибетаина. Установленные характеристики вязких растворов, закономерности их взаимодействия с доломитом, зависимости фильтрации в модели карбонатного пласта являются необходимыми исходными данными для составления дополнения к регламенту промысловой кислотной обработки карбонатного пласта.

выводы

1. В термобарических условиях пласта (t = 12 °С, P = 10 МПа) динамические вязкости и показатели неньютоновского поведения жидкости минерализованного ($C_{\text{NaCl}} = 150 \text{ г/л}$) раствора HCl (12 мас. %) с добавлением 0,5 мас. % ксантана при скоростях сдвига $\gamma = 25{-}100 \text{ c}^{-1}$ составляют $\eta = 127,86{-}59,27$ мПа·с и n = 0,378. В тех же условиях реологические показатели минерализованных растворов HCl с добавлением 0,5 мас. % склероглюкана, 6,5 мас. % карбоксибетаина, 0,8 мас. % ПАА составляют $\eta = 112,79{-}51,84$ и n = 0,424, $\eta = 102,14{-}47,95$ мПа·с и n = 0,449, $\eta = 23,85{-}13$ мПа·с и n = 0,547 соответственно. Минерализованные растворы HCl при добавлении 0,5 мас. % ксантана, 0,5 мас. % склероглюкана, 6,5 мас. % карбоксибетаина, 0,8 мас. % ПАА имеют значения межфазного натяжения на границе с нефтью $\sigma = 8,01$ мН/м, $\sigma = 8,56$ мН/м, $\sigma = 0,21$ мН/м, $\sigma = 6,25$ мН/м соответственно (t = 12 °С, P = 10 МПа).

2. Коэффициенты массопередачи, определенные при аппроксимации зависимостей убыли масс кальцита CaCO₃ и доломита Ca_{1,16}Mg_{0,84}(CO₃)₂ в минерализованном растворе HCl (12 мас. %), составляют $K_{\rm M} = 4,14 \cdot 10^{-3} \cdot 6,21 \cdot 10^{-3}$ см/сек и $K_{\rm M} = 0,63 \cdot 10^{-3} \cdot 0,88 \cdot 10^{-3}$ см/сек (при t = 10-25 °C, P = 0,101 МПа). Добавление в минерализованный раствор HCl 0,5 мас. % ксантана, 0,5 мас. % склероглюкана, 6,5 мас. % карбоксибетаина приводит к снижению коэффициентов массопередачи до значений $K_{\rm M} = 0,27 \cdot 10^{-3} \cdot 0,37 \cdot 10^{-3}$ см/сек и $K_{\rm M} = 0,17 \cdot 10^{-3} \cdot 0,22 \cdot 10^{-3}$ см/сек, $K_{\rm M} = 0,39 \cdot 10^{-3} \cdot 0,52 \cdot 10^{-3}$ см/сек и $K_{\rm M} = 0,32 \cdot 10^{-3} \cdot 0,42 \cdot 10^{-3}$ см/сек, $K_{\rm M} = 0,16 \cdot 10^{-3} \cdot 0,21 \cdot 10^{-3}$ см/сек и $K_{\rm M} = 0,110 \cdot 10^{-3} \cdot 0,13 \cdot 10^{-3}$ см/сек соответственно.

3. Фильтрация раствора HCl (12 мас. %, х. ч.) и раствора HCl (12 мас. %, х. ч.) с добавлением ПАВ Неонол РХП-20 (3 мас. %) со скоростью подачи Q = 0,25 см³/мин через модели карбонатного пласта приводит к образованию каналов с пространственной формой конуса. Числа Дамкелера рассчитанные для данных каналов составляют $N_{\text{Da}} = 1,16$ и $N_{\text{Da}} = 0,91$.

4. Каналы с пространственной формой червоточины образуются в моделях карбонатного пласта при фильтрации растворов HCl (12 мас. %) с добавлением 0,5 мас. % ксантана, 0,5 мас. % склероглюкана, 6,5 мас. % карбоксибетаина со скоростями подачи Q = 0,25 см³/мин, Q = 0,1 см³/мин

0,5 см³/мин соответственно. Рассчитанные числа Дамкелера для данных каналов составляют $N_{\text{Da}} = 0,32$, $N_{\text{Da}} = 0,26$ и $N_{\text{Da}} = 0,49$ соответственно.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Паньков С. Ю., Мухутдинов Р. А., Хайдар А. М., Горин А. Н., Байкова В. Г. Перспективные технологии разработки и вовлечения запасов низкопроницаемых доломитовых коллекторов Восточной Сибири // Нефтяное хозяйство. – 2012. – № 11. – С. 48-51.

2. Maheshwari P., Ratnakar R. R., Kalia N., Balakotaiah V. 3-D Simulation and Analysis of Reactive Dissolution and Wormhole Formation in Carbonate Rocks // Chem. Eng. Science. – 2013. – Vol. 90. – P. 258-274.

3. Солодовников А. О., Андреев О. В., Киселев К. В. Влияние скорости закачки растворов кислотообразующих реагентов на структуру каналов фильтрации // Башкирский химический журнал. – 2013. – № 1. – С. 135-137.

4. Григорьева В. Н. Разработка технологических жидкостей с использованием ПАВ и биополимерных реагентов для интенсификации добычи нефти: автореф. дис. ... канд. хим. наук: 02.00.11 / Виктория Валерьевна Григорьева. - М., 2011. - 25 с.

5. Lund K., Fogler H. S., McCune C. C. Acidization – I. The Dissolution of Dolomite in Hydrochloric Acid // Chem. Eng. Science. – 1973. – Vol. 28, N 3. – P. 691-700.

6. Дельмон Б. Кинетика гетерогенных реакций. – М.: Мир, 1972. – 552 с.

7. Cappelaere E., Cressely R. Rheological Behavior of an Elongated Micellar Solution at Low and High Salt Concentrations // Colloid Polymer Science. – 1998. – V. 276, No. 11. – P. 1050-1056.

8. Hoefner M. L., Fogler H. S. Pore Evolution and Channel Formation during Flow and Reaction in Porous Media // AIChe Journal. – 1988. – No. 1. – P. 44-54.

9. Cohen C. E., Ding D., Quintard M., Bazin B. From Porescale to Wellbore Scale: Impact of Geometry on Wormhole Growth in Carbonate Acidization // Chem. Eng. Science. – 2008. – Vol. 63, No. 12. – P. 3088-3099.

10. Rojas M. R., Muller A. J., Saez A. E. Shear Rheology and Porous Media Flow of Wormlike Micelle Solutions Formed by Mixtures of Surfactants of Opposite Charge // Journal of Colloid Interface Science. – 2008. – No. 326. – P. 221-226.

Список публикаций по теме диссертации

статьи в рецензируемых научных журналах

1. Антонов, С. М. Влияние гелирующих агентов на реологические и фильтрационные характеристики соляной кислоты / С. М. Антонов, О. В. Андреев, К. В. Киселев // Известия вузов. Нефть и газ. – 2014. – № 2. – С. 77-82.

2. Антонов, С. М. Установление физико-химических характеристик гелированных растворов HCl применительно к условиям залегания низкотемпературного засолоненного карбонатного коллектора / С. М. Антонов, Б. Т. Бижанов, К. В. Киселев // Вестник ТюмГУ. – 2014. – № 5. – С. 145-153.

3. Андреев, О. В. Взаимодействие вязких растворов HCl с кальцитом и доломитом в условиях высокой минерализации / О. В. Андреев, С. М. Антонов, К. В. Киселев // Вестник Санкт-Петербургского государственного университета. – 2016. – Т. 3. – № 61. – С. 321-330.

4. Andreev, O. V. Kinetics of Reaction between Gelled HCl and Dolomite $Ca_{1,16}Mg_{0,84}(CO_3)_2$ and Filtration of Gelled Acid in a Reservoir Core Sample/ O. V. Andreev, S. M. Antonov, K. V. Kiselev // International Journal of Oil, Gas and Coal Technology. – 2017. – Vol. 14, N 4. – P. 369-379.

другие научные публикации

5. Антонов, С.М. Разработка технологии применения гелированных кислот для обработки сложнопостроенных карбонатных пластов / С. М. Антонов // Лучшие

студенческие научные работы: Тез. докл. 64-ой студ. науч. конф. ТюмГУ г. Тюмень 18 апреля 2013. – Тюмень : Типография «Печатник», 2013. – С. 158-163.

6. Антонов, С. М. Установление кинетических характеристик взаимодействия гелированной соляной кислоты с доломитом / ФизХимБио – 2013: Тез. докл. II Межд. науч.тех. конф. г. Севастополь 27-29 ноября 2013. – Севастополь : СевНТУ, 2013. – С. 77-79.

7. Антонов, С. М. Определение скорости кислотно-карбонатного взаимодействия при гелировании соляной кислоты / С. М. Антонов, О. В. Андреев // Химия: образование, наука, технология: Сб. науч. тр. Всерос. науч.-практ. конф. г. Якутск 25-27 февраля 2013 г. – Киров: МЦНИП, 2014. – С. 27-30.

8. Антонов, С. М. Определение скорости кислотно-карбонатного взаимодействия при гелировании соляной кислоты / С. М. Антонов, О. В. Андреев // Проблемы геологии и освоения нёдр: Тез. докл. XVIII Межд. науч. симпозиума г. Томск 7-11 апреля 2014. – Томск: ТПУ, 2014. – С. 45-47.

9. Антонов, С. М. Растворение нефтенасыщенного доломита в растворах HCl высокой вязкости / С. М. Антонов, О. В. Андреев // Проблемы теоретической и экспериментальной химии: Тез. докл. XXIV Рос. молодеж. науч. конф. г. Екатеринбург 23-25 апреля 2014. – Екатеринбург : Изд-во Урал. ун-та, 2014. – С. 14-15.

10. Антонов, С. М. Влияние высокой минерализации пластовой воды на устойчивость гелированных кислотных растворов / С. М. Антонов, О. В. Андреев // Проблемы и перспективы развития химии, нефтехимии и нефтепереработки: Тез. докл. Межд. научн.-практ. конф. г. Нижнекамск 25 апреля 2014. – Нижнекамск : ФГБОУ ВПО «Казанский национальный исследовательский технологический университет», 2014. – С. 6-8.

11. Антонов, С. М. Расчет числа Дамкелера для процесса фильтрации гелированного кислотного раствора в карбонатной породе / С. М. Антонов, О. В. Андреев, А. А. Пономарев // Нефтепромысловая химия: Тез. докл. I Межд. (IX Всероссийск.) научн.-практ. конф. г. Москва 26 июня 2014. – М. : РГУ нефти и газа имени Губкина, 2014. – С. 46-47.

12. Antonov, S. M. Study of the Dissolution Kinetic Reaction $CaCO_3$, $CaMg(CO_3)_2$ by Gelled Acid at the Presence of NaCl / S. M. Antonov, O. V. Andreev, B. T. Bijanov // High-tech in chemical engineering-2014: XV International scientific conference Moscow 22-26 September 2014. – Moscow : MITHT Publisher, 2014. – P. 78.

13. Антонов, С. М. Визуализация кислотной обработки карбонатных пластов / С. М. Антонов, А. А. Пономарёв, О. В. Андреев // Нефть и газ 2015: Тез. докл. 69-ой Межд.молодеж. научн. конф., 14-16 апреля 2015. – М. : РГУ нефти и газа имени Губкина, 2015. – С. 129.

14. Antonov, S. M. Changing the Rheological Properties of the Viscous HCl by Reacting with the Dolomite / S. M. Antonov, O. V. Andreev // High-Tech in Chemical Engineering – 2016: Abstracts of XVI International Scientific Conference with elements of school of young scientists 10-15 October 2016. – Moscow : MITHT Publisher, 2016. – P. 22.