На правах рукописи

Медянкина Ирина Сергеевна

ФОРМИРОВАНИЕ И РАЗДЕЛЕНИЕ ФАЗ В ОКСИДНО–ФТОРИДНЫХ КРЕМНИЙСОДЕРЖАЩИХ СИСТЕМАХ

1.4.4 Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2024

Работа выполнена в лаборатории химии гетерогенных процессов Федерального государственного бюджетного учреждения науки Института химии твердого тела Уральского отделения Российской академии наук (ИХТТ УрО РАН)

Научный руководитель:	Пасечник Лилия Александровна кандидат химических наук, Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения РАН, ведущий научный сотрудник
Официальные оппоненты:	Волкович Владимир Анатольевич кандидат химических наук, доцент, Физико-технологический институт ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», доцент
	Шуняев Константин Юрьевич доктор химических наук, профессор, Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения РАН, главный научный сотрудник
Ведущая организация:	Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук»

Защита состоится «24» октября 2024 г. в _____ч. на заседании диссертационного совета 24.1.149.01 (Д 004.004.01) на базе Федерального государственного бюджетного учреждения науки Института химии твердого тела Уральского отделения Российской академии наук (ИХТТ УрО РАН) по адресу: 620990, г. Екатеринбург, ул. Первомайская, 91, Зал заседаний Ученого совета.

С диссертацией можно ознакомиться в центральной научной библиотеке Уральского отделения РАН и на сайте ИХТТ УрО РАН: http://www.ihim.uran.ru.

Автореферат разослан « __» ____ 2024 г.

Ученый секретарь диссертационного совета кандидат химических наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования

Соединения кремния – второго по распространенности элемента в природе незаменимы во всех сферах деятельности человека – от металлургии и керамики до электроники и пищевой промышленности. От области применения зависит необходимая форма кремния – металлический или в виде оксида, а также чистота – от высокочистого электронного или медицинского качества до технического. Сегодня промышленность может выбирать наиболее богатое по кремнию сырье – кварциты, пески, перлит, нефелин, обсидиан. Для традиционного сырья отработаны два основных метода – спекание со щелочами и кислотный, которые требуют высокое качество сырья, высокие температуры и большой расход реагентов. Для переработки бедного по кремнию сырья, в том числе, техногенных отходов эти методы не подходят. Высоким содержанием кремния отличаются пиро/гидрометаллургические шлаки, шламы, золы, отходы обогащения, которые зачастую являются многокомпонентными оксидными системами. Так в отвалах Качканарского горно-обогатительного комбината и на шламовых полях двух алюминиевых заводов Урала скопилось более 1,5 млрд. и 600 млн. тонн соответственно кремнеземсодержащих тонкоизмельченных отходов. Извлечение лишь одного ценного компонента из комплексных руд приводит к неуклонному росту объемов техногенных месторождений. Поэтому существует необходимость создания таких химических технологий, в которых количество отходов минимально, а реагенты могут быть регенерированы и использованы многократно. Кроме того, зачастую заключенные в силикатных минералах ценные компоненты остаются инертными в известных кислотных методах. Таким образом, разрушение кремнеземсодержащей составляющей, представляющее определенные трудности, является актуальной задачей. Одновременно решаются вопросы расширения номенклатуры конечных продуктов переработки минерального сырья, которые востребованы в современных технологиях.

Для разложения кремнийсодержащих систем особый интерес представляет использование фторидов аммония, что позволяет перевести кремний в комплексный фторосиликат аммония, обладающий низкой температурой возгонки и высокой растворимостью в водных растворах. В работах Э.Г. Ракова, Н.М. Лапташ, Е.И. Мельниченко, А.Н. Дьяченко, В.С. Римкевич, Софронова В.Л., О.А. Ожерельев и др. авторов из таких организаций, как РХТУ им. Д.И. Менделеева, НИ ТПУ, ИХ ДВО РАН и СТИ НИЯУ МИФИ активно исследуется сублимационное отделение фторидов (кремния и титана) и выделение редкоземельных металлов из природных минералов (кварцитов, циркона, бадделеита, ильменита и др.), а отходов и концентратов, содержащих более 60-70% целевого элемента. При этом отсутствуют сведения о фторировании многокомпонентных оксидных систем с низким содержанием кремнезема и условиях разделения продуктов, в том числе гидрохимическим методом, а также о свойствах получаемого аморфного кремнезема.

Диссертационная работа является составным элементом исследований, проводимых в ИХТТ УрО РАН в рамках тем НИР «Разработка методов синтеза новых неорганических соединений и сплавов на основе рассеянных редких металлов из продуктов комплексной переработки шламовых отходов цветной и черной металлургии» (гос. рег. № 0397-2015-0024) и

«Физикохимия гетерогенных превращений в ресурсосберегающих химико-технологических процессах и сорбционном извлечении радионуклидов» (гос. рег. № А19-119031890028-0). Кроме того, об актуальности проводимых исследований свидетельствует поддержка работы грантом УрО РАН № 15-11-3-20 «Физико-химическое обоснование технологий рециклинга техногенных отходов переработки бокситов и медных руд Урала с получением кремнийсодержащего и полиметаллического концентратов».

Целью диссертационной работы является разработка физико-химических основ селективного выделения аморфного SiO₂ в реакциях фторирования кремнийсодержащих многокомпонентных систем.

В соответствии с поставленной целью решались следующие задачи:

- 1. Термодинамическое моделирование и определение направления химических превращений оксидных и силикатных систем в присутствии гидрофторида аммония;
- 2. Определение механизма взаимодействия оксидов металлов в составе многокомпонентных систем с NH₄HF₂ при твердофазном и гидрохимическом процессах;
- 3. Определение кинетических закономерностей выделения кремния в виде комплексного фторида (NH₄)₂SiF₆;
- 4. Разработка и оптимизация условий получения аморфного SiO₂ с развитой удельной площадью поверхности и функциональных материалов на его основе.

Научная новизна работы:

- Впервые изучены реакции взаимодействия гидрофторида аммония с многокомпонентными оксидными системами в составе техногенных отходов (красные шламы (КШ) глиноземных заводов и отходы обогащения низкотитанистых ванадий содержащих титаномагнетитов хвосты мокрой магнитной сепарации (ХММС)), содержащих сложные силикаты Na, Ca, Mg и Al и оксиды железа (III), кальция и алюминия. Показана термодинамическая вероятность и экзотермичность прямых реакций гидрофторирования сложных соединений NaAlSiO₄·H₂O, Ca₃Al₂O₆·6H₂O и CaMgSi₂O₆.
- Установлено снижение (на 30–50°С) температур синтеза и разложения фторидов алюминия и железа (III) и возгонки фторосиликата аммония в присутствии в системах оксидов активно взаимодействующих металлов – щелочного (Na) или щелочноземельного (Ca), а также формирование при температурах выше 400 °С двойных и тройных фторидов: α-CaAlF₅, Na₂Ca₃Al₂F₁₄, Na₃AlF₆.
- 3. Впервые изучена кинетика гидрохимического извлечения кремния в растворы гидрофторида аммония из силикатной системы на основе CaMgSi₂O₆. Установлено, что в модели «сжимающейся сферы» процесс растворения кремния имеет смешанный механизм, скорость которого лимитируется химическим взаимодействием и скоростью переноса реагента через слой нерастворимых продуктов, образующихся на поверхности твердых частиц минералов.
- 4. Разграничены области выделения аморфного кремнезема при нейтрализации аммиаком кремнефторидного раствора, полученного растворением в воде возгона (NH₄)₂SiF₆ или гидрохимическим комплексованием кремния из силикатов растворами гидрофторида аммония. Показано, что гидролитическое разложение раствора 8–10 масс. % (NH₄)₂SiF₆ до

pH=8–9 при температурах 25–50 °C позволяет получить после отделения и сушки высокодисперсный SiO₂ с содержанием примесей не более 1–2 %.

5. На основе выделенного аморфного SiO₂ разработаны способы синтеза составов, содержащих в качестве функциональных соединений CaSiO₃, Co₂SiO₄, CoAl₂O₄ и Co₃(Si₂O₅)₂(OH)₂; оценены структурные и физико-химические характеристики.

Теоретическая и практическая значимость

Теоретическая значимость работы заключается в получении данных о реакционной способности фаз, влиянии состава системы на последовательность фазообразования, состав и структуру образующихся фторидов или оксидов, что способствует разработке методов разделения многокомпонентных систем и синтеза неорганических материалов заданного состава и набора функциональных свойств. Результаты фторирования оксидных минералов, как в твердой фазе, так и гидрохимическим выщелачиванием с селективным излечением и осаждением соединений кремния из фторидных растворов будут востребованы при разработке и оптимизации способов переработки И полной утилизации кремнийсодержащих многокомпонентных систем, в том числе техногенных отходов. Аморфный кремнезем, полученный путем фторирования при низких энергозатратах, с регенерацией фторирующего агента, соответствует ГОСТ 14922-77.

Полученные оригинальные результаты о выявленных закономерностях процессов и морфологических особенностях синтезированных веществ могут быть использованы в учебных курсах и методических разработках по физической химии, методам исследования веществ и материалов, материаловедению, найти применение в работах других исследователей.

Практический интерес результаты работы могут представлять для предприятий – производителей кремнеземсодержащих отходов и полупродуктов для расширения номенклатуры сырьевых материалов, технологических приемов их переработки и ассортимента производимой кремнеземсодержащей продукции.

Положения, выносимые на защиту:

- 1. Термодинамика и особенности фазообразования в оксидных и силикатных системах в присутствии NH₄HF₂ в области температур от 25 до 500 °C.
- Кинетика и механизм гидрохимического извлечения кремния из силикатной системы на основе CaMgSi₂O₆ растворами NH₄HF₂. Результаты математического моделирования гидрохимического процесса и степень извлечения кремния в зависимости от концентрации NH₄HF₂, температуры и продолжительности.
- 3. Оценка влияния состава сырья, количества реагентов (NH₄HF₂, NH₄OH), продолжительности и температуры процессов на выход и состав кремнийсодержащих продуктов при получении (NH₄)₂SiF₆ и аморфного SiO₂.
- 4. Условия синтеза и свойства высокодисперсного кремнезема и функциональных составов, содержащих CaSiO₃, Co₂SiO₄, CoAl₂O₄ и Co₃(Si₂O₅)₂(OH)₂.

Личный вклад автора

Результаты, приведенные в диссертации, получены лично автором или при его непосредственном участии. Постановка цели и задач исследования, выбор теоретических и экспериментальных методов, планирование и проведение исследований, обработка и анализ экспериментальных данных, подготовка научных докладов и публикаций, формулировка выводов и защищаемых положений диссертации выполнены автором совместно с научным руководителем. Отдельные эксперименты и аналитические исследования проведены при участии сотрудников ИХТТ УрО РАН: к.х.н. В.М. Скачкова, к.х.н. Л.Ю.Булдаковой, к.х.н. М.Ю. Янченко, к.х.н. А.П. Тютюнника, к.х.н. В.Т. Сурикова, д.х.н. М.В. Кузнецова, к.х.н. И.А. Попова, А.Ю. Чуфарова и А.А. Иошина.

Достоверность результатов и апробация работы

Достоверность полученных результатов определяется совокупностью полученных экспериментальных и теоретических данных, подтверждающих друг друга и дополняющих ранее опубликованные в литературе. Результаты работы были доложены и обсуждены на 28 всероссийских и международных конференциях, в их числе: Междисциплинарный молодежный форум с международным участием «Новые материалы» (Москва, 2015), VI Международная молодежная школа-семинар «Наноматериалы и технологии» (Улан-Удэ, 2016), XV Международная конференция по термическому анализу и калориметрии в России (Санкт-Петербург, 2016), XX Менделеевский съезд по общей и прикладной химии (Екатеринбург, 2016), The XII International Conference on chemistry for young scientists «MENDELEEV 2021» (Санкт-Петербург, 2021), Международная научно-практическая конференция «Химия и химическая технология в XXI веке» (Томск, 2022), IV Всероссийская научная конференция с международным участием «IV Байкальский материаловедческий форум» (Улан-Уде, 2022), XIV Симпозиум «Термодинамика и материаловедение» (Екатеринбург, 2022), Конгресс с международным участием «Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований» (ТЕХНОГЕН) (Екатеринбург, 2023), 4th International Bauxite Residue Valorisation and Best Practices Conference (Greece, 2022), Международная молодежная научная конференция «Физика. Технологии. Инновации» (Екатеринбург, 2023), Международная конференция студентов, аспирантов и молодых ученых «Ломоносов-2023» (Москва, 2023), IV Всероссийская конференция «Исследования и разработки в области химии и технологии функциональных материалов» (Апатиты, 2023), научная конференция «Фторидные материалы и технологии» (Москва, 2024).

Публикации. Основные результаты диссертации опубликованы в 11 работах, из них 8 статей в рецензируемых изданиях, входящих в международные системы цитирования и 3 в сборниках трудов, получено 3 патента РФ, опубликовано 30 тезисов и материалов докладов на международных и российских конференциях.

Структура и объем диссертационной работы. Диссертационная работа изложена на 149 страницах, содержит 28 таблиц и 77 рисунков; состоит из введения, основной части из 4 глав, заключения с выводами, списка цитируемой литературы, включающего 240 источников.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении рассмотрены актуальность и степень разработанности темы исследования, сформулированы цель и задачи работы, ее научная новизна, теоретическая и практическая значимость, отражены выносимые на защиту положения, приведена информация о структуре и объеме, степени достоверности и апробации результатов.

В первой главе представлен анализ научно-технической литературы по характеристике такого техногенного сырья, как красный шлам – отход гидрохимической переработки бокситов при извлечении глинозема Al₂O₃ (OAO «БАЗ» и предприятия «Три Ущелья» КНР) и XMMC отход обогащения методом мокрой магнитной сепарации титаномагнетитов (ЕВРАЗ КГОК). Описаны существующие способы их переработки и использования. Описан фторидный метод, различному минеральному Показаны способы применяемый К сырью. получения высокодисперсного аморфного кремнезема, его основные свойства и области применения. Приведены сведения о таких функциональных материалах как силикат кальция, алюминат кобальта, силикат кобальта и натрийхромовый силикат.

По результатам обзора сделан вывод о том, что переработка многокомпонентных оксидных систем с невысоким содержанием кремния, в частности техногенных отходов, необходима как с экологической, так и с экономической точки зрения. А применение фторидных способов, позволяющих селективно выделить кремний из его минералов, способствует полному разделению компонентов при разрушении силикатной матрицы минералов. В настоящее время исследований по твердофазному и гидрохимическому фторированию указанных видов техногенных отходов в литературе не обнаружено, в том числе с целью обоснования выбранных способов и установления особенностей фазообразования.

Во второй главе приведены результаты исследований вещественного состава исходных многокомпонентных силикатных систем (Таблица 1) – техногенных отходов: низко кремнистого красного шлама, НКШ (Рисунок 1), хвостов мокрой магнитной сепарации, ХММС (Рисунок 2) и высоко кремнистого красного шлама, ВКШ; описаны данные о вспомогательных веществах, методики ведения экспериментов и методы исследования состава и свойств фаз.

Фазовый и структурный анализ проводили при помощи дифрактометров Shimadzu XRD-7000. Для определения фазового состава полученных образцов использовали программный пакет WinXPOW. Термограммы получены на термоанализаторе Термоскан-2. Удельную поверхность порошков измеряли на приборе Micromeritics Gemini VII Surface Area and Porosity, дисперсность – с помощью прибора Horiba Laser Scattering Particle Size Distribution Analyzer LA-950. Микроструктура материалов исследовали на сканирующем электронном микроскопе (CЭM) JEOL JSM-6390LA и просвечивающем электронном микроскопе (ПЭМ) ThemisZ (Thermo Fisher Scientific, USA). Для определения истинной плотности образцов использовали автоматизированный пикнометр газового вытеснения Micrometrics AccuPyc II 1340.

Объект	Fe ₂ O ₃	Al ₂ O ₃	CaO	SiO ₂	Na ₂ O	TiO ₂	MgO
Низкокремнистый красный шлам (НКШ)	41,5	14,2	12,4	11,4	4,5	3,8	1,6
Высококремнистый красный шлам (ВКШ)	6,7	19,8	24,5	28,4	11,7	2,8	1,1
Хвосты мокрой магнитной сепарации (ХММС)	2,5	6,8	19,5	47,0	1,0	0,8	17,5

Таблица 1 – Оксидный состав объектов исследования, масс. %

Рисунок 1 – СЭМ (а), фотография (б), рентгенограмма (в) и распределение частиц по размерам (г) НКШ;
фазовый состав: ◆ – α-Fe₂O₃; ◆ – CaCO₃;
◆ –Na₆[Al₆Si₆O₂₄](CO₃)₁₋₂·2H₂O;
◆ -{Ca₄(H₂O)₁₈}[Al₈Si₁₆O₄₈]; ◆ – TiO₂; ◆ – ZrSiO₄

Рисунок 2 – СЭМ (а), фотография (б), рентгенограмма (в) и распределение частиц по размерам (г) XMMC; фазовый состав: ◆ – Ca(Mg,Fe,Al)(Si,Al)₂O₆; ◆ – Ca₂Mg₅Si₈O₂₂(OH)₂; ◆ – NaAlSi₃O₈/CaAl₂Si₂O₈

В третьей главе рассмотрены два способа фтороаммонийного извлечения кремния (Рисунок 3) в виде гексафторосиликата аммония, ГФСА, и изложены результаты изучения фазообразования при твердофазном фторировании многокомпонентных оксидных систем (техногенного сырья) в сравнении с индивидуальными и более сложными оксидами.

Рисунок 3 – Схемы разделения компонентов сырья при фторировании: твердофазном (а) и гидрохимическом (б)

Оценка **термодинамической вероятности** протекания реакций фторирования отдельных простых оксидов проведена в интервале 298–773 К, принимая, что теплоемкость веществ остается постоянной во всем диапазоне температур. Расчеты показали, что, кроме рутила TiO₂, для всех оксидов реакции экзотермичны, начинаются при стандартных условиях и термодинамически возможны в прямом направлении. Показано, что реакции сложных силикатных фаз, входящих в состав многокомпонентных систем, Ca₃Al₂O₆·6H₂O, NaAlSiO₄·H₂O и CaMgSi₂O₆ с NH₄HF₂ (Таблицы 2 и 3) протекают с экзоэффектами и характеризуются отрицательными значениями ΔG^{0}_{298} и ΔH^{0}_{298} . Вскрытие алюмосиликата натрия происходит благодаря высокой доступности ионов натрия в структуре слоистого цеолита с самой большой по абсолютной величине ΔG^{0}_{298} =-815,2 кДж/моль. Взаимодействие с диопсидом CaMgSi₂O₆, в

цепочками $[Si_2O_6]^{4-}$, также протекает самопроизвольно. Сделано предположение, что, образование фторидов щелочных и щелочноземельных металлов облегчает синтез $(NH_4)_2SiF_6$ из силикатных минералов.

№ реакции Компонент		Реакция				
1		$Ca_3Al_2O_6 \cdot 6H_2O + 9NH_4HF_2 =$				
1	$Ca_3Al_2O_6\cdot 6H_2O$	$= 3CaF_{2} + 2(NH_{4})_{3}AIF_{6} + 3NH_{3} + 12H_{2}O$				
		$NaAlSiO_4 \cdot H_2O + 13NH_4HF_2 =$				
2	NaAlSiO ₄ ·H ₂ O	$= 2(NH_4)_3 AIF_6 + 2(NH_4)_2 SIF_6 + 2NaF + 3NH_3 \uparrow + 10H_2O$				
		$CaMgSi_2O_6 + 8NH_4HF_2 =$				
3	$CaMgS1_2O_6$	$= \operatorname{CaF}_{2} + \operatorname{MgF}_{2} + 2(\operatorname{NH}_{4})_{2}\operatorname{SiF}_{6} + 6\operatorname{H}_{2}O\uparrow + 4\operatorname{NH}_{3}\uparrow$				

Таблица 2 – Реакции взаимодействия сложных оксидов с NH₄HF₂

№ реакции	ΔН ⁰ ₂₉₈ , кДж моль	ΔG ⁰ ₂₉₈ , кДж моль	ΔG ⁰ ₃₇₃ , кДж моль	ΔG ⁰ ₄₇₃ , кДж моль	ΔG ⁰ 573, кДж моль	ΔG ⁰ ₆₇₃ , кДж моль	ΔG ⁰ ₇₇₃ , кДж моль
1	-440,4	-106,5	-109,4	-112,7	-116,1	-120,2	-126,4
2	-96,1	-815,2	-802,5	-782,7	-778,4	-719,1	-710,2
3	-17,1	-244,3	-246,5	-250,3	-253,7	-261,4	-269,7

Таблица 3 – Результаты термодинамических расчетов

Методом термического анализа прослежено фазообразование индивидуальных оксидов и многокомпонентных систем с NH₄HF₂ в интервале температур от 25 до 500 °C при различном соотношении компонентов. Методом РФА установлен состав продуктов взаимодействия. Термограммы фторирования многокомпонентных систем рассмотрены на рисунках 4–6 в сравнении с термограммами фторирования входящих в их основной состав индивидуальных фаз: HKШ с Fe₂O₃, BKШ (Ca₃Al₂O₆·6H₂O) с CaO, XMMC с SiO₂. Термические эффекты на всех термограммах можно разделить на три группы. В первой группе наблюдается наложение эндо- и экзоэффектов при 40–180 °C, характеризующих как процессы плавления и дегидратации реагента, так и образования фторидных соединений. В этой области температур вследствие разложения реагента с выделением аммиака и воды в системе NH₄HF₂–NH₄F образуется низкоплавкая эвтектика. Из α -Fe₂O₃ происходит образование комплексного фтороферрата (NH₄)₃FeF₆, а в составе HKШ/BKШ/XMMC – смесь комплексных (NH₄)₃FeF₆, (NH₄)₃AlF₆, (NH₄)₃SiF₇/(NH₄)₂SiF₆ и простых фторидов NaF, MgF₂, CaF₂. Процесс образования комплексов на термограмме фторирования HKШ сопровождается широким эндоэффектом от 105 °C до 185 °C (Рисунок 4, кривые (в), (г)).

Вторая группа достаточно глубоких эндоэффектов в интервале температур от 200 °C до 370 °C на всех термограммах обусловлена процессами полного разложения реагента до газообразных NH_3 и HF, а также разложения гексафторидных комплексов. Эндоэффект плавления реагента на термограмме фторирования Fe_2O_3 (Рисунок 4, кривая (a)) отсутствует по причине отсутствия сверх стехиометрического количества NH_4HF_2 . С глубоким минимумом около 330 °C идет разложение индивидуального комплекса (NH_4)₃FeF₆ до NH_4FeF_4 . Термоэффекты выше 400 °C отвечают за разложение тетрафторидных комплексных соединений до простых фторидов и далее до оксидов. Аналогично превращениям комплексных фторидов

железа ступенчато идут реакции разложения комплексных фторидов в составе НКШ/ВКШ. При этом температура разложения NH_4FeF_4 в многокомпонентной системе снижается до ~400 °C по сравнению с многокомпонентной (~430 °C), а образование (NH_4)₃FeF₆ из гематита начинается уже при температуре около 100 °C. Обнаружено, что фторсодержащие фазы железа FeF₃ и FeOF, которые образуются при термической деструкции фтороаммонийных комплексов, в составе многокомпонентных систем оказываются стабильны устойчивы до более высоких температур.

Кальцийсодержащие фазы образуют устойчивый флюорит CaF_2 уже в начальный момент контактирования реакционной смеси, который в присутствии соединений алюминия выше 400°C входит в состав двойного фторида α -CaAlF₅. В системе BKШ – NH₄HF₂ присутствующие ионы натрия способствуют формированию криолита NaCaAlF₆ (Рисунок 5, кривая (б)).

Термограмма фторирования XMMC в сравнении с термограммой кремнезема SiO₂ приведена на рисунке 6. Взаимодействие ХММС, так же, как и НКШ начинается при растирании смеси при комнатной температуре. Совмещенные экзо- и эндоэффекты на кривой ДТА до 80 °C отвечают за удаление NH₃ и HF и образование комплексных фторидов $(NH_4)_3SiF_7/(NH_4)_2SiF_6$, $(NH_4)_2AlF_6$, $(NH_4)_2FeF_6$. Активирование реакционной смеси идет при дальнейшем нагреве с эндоэффектом при 110 °C с плавлением реагента и образованием CaF₂ и MgF₂. Эффект около 160 °С может быть связан одновременно с разложением небольшого избытка NH₄F и с разложением более насыщенного по NH₄F комплексного фторида кремния $(NH_4)_3SiF_7$. Образование $(NH_4)_3SiF_7$ одновременно с $(NH_4)_2SiF_6$ показано на рентгенограммах на рисунках 7а и 8а. На термограмме ХММС низкотемпературный эффект отсутствует, и появляется глубокий суммарный эндоэффект разложения гексафторометаллатов аммония от 220 до 280-290 °С. Обнаружено, что сублимация (NH₄)₂SiF₆ при фторировании многокомпонентной системы – XMMC начинается уже около 300 °C с минимумом при 340 °C, что примерно на 20 °С ниже, чем при фторировании в тех же условиях чистого SiO₂ с началом возгонки 320 °С и минимумом при 360 °С.

Отсутствие и удаление кремнийсодержащих соединений подтверждено на рентгенограммах остатков фторирования систем при 500 °C в течение 1 ч (Рисунки 76 и 86). Данные EDX–анализа показывают отсутствие соединений кремния в продуктах фторирования систем и полноту протекания реакций (НКШ, ВКШ и ХММС) при 500 °C (Таблица 4).

						-	
Объект	F	Na	Ti	Mg	Al	Ca	Fe
НКШ	36,2	2,7	1,5	0,62	5,4	9,2	29,5
ВКШ	31,4	4,7	5,7	0,9	14,4	22,8	16,5
XMMC	34,2	0,75	1,9	10,3	6,4	39,1	12,0

Таблица 4 – Результаты EDX-анализа остатков фторирования систем при 500 °C, масс. %

Рисунок 7 – РФА смеси НКШ : NH₄HF₂ после выдержки 1 ч при 25°С (а) и 500°С (б)

Рисунок 8 – Р Φ А смеси XMMC : NH₄HF₂ после выдержки 1 ч при 25°С (а) и 500°С (б)

На основании полученных данных предложена последовательность термохимических превращений оксидно-фторидных соединений в составе многокомпонентных систем для оксидов железа (III), кальция и алюминия, $Ca_3Al_2O_6 \cdot 6H_2O$, NaAlSiO₄·H₂O и CaMgSi₂O₆ (рисунок 9). Присутствие легкофторируемых соединений кальция и магния снижает температуры образования (NH₄)₂FeF₆ до комнатной и его разложения до NH₄FeF₄ с 430 °C до 400 °C, а также приводит к стабилизации продукта разложения FeOF вплоть до 500 °C. Целевым продуктом фторирования является продукт возгонки – ГФСА, содержание примесей в котором не превышает 10^{-3} масс. %.

Исходные вещества	Пр	Конечные фазы		
$Ca_3Al_2(SiO_4)(OH)_8$	$(NH_4)_3SiF_7$	$(\mathbf{NH}_4)_2\mathbf{SiF}_6$	$(\mathbf{NH}_4)_2\mathbf{SiF}_6\uparrow$	NaCaAlF ₆
$Na_{6}[Al_{6}Si_{6}O_{24}](CO_{3})$	$(NH_4)_2SiF_6$	NH ₄ AlF ₄	AlF	CaAlF ₅
	$(NH_4)_3AlF_6$	NaF, CaF ₂	NaF. CaF ₂	NaF, CaF_2
	NaF, CaF ₂		rtur, cur 2	
$Ca_2Mg_5Si_8O_{22}(OH)_2$	$(NH_4)_3SiF_7$	$(NH_4)_2SiF_6$	$(\mathbf{NH}_4)_2\mathbf{SiF}_6\uparrow$	CaF_2 , MgF_2
	$(NH_4)_2SiF_6$	CaF ₂ , MgF ₂	CaF_2 , MgF_2	
	CaF_{2}, MgF_{2}	2 2		
[Fe ₂ O ₃] в НКШ	$(\mathbf{NH}_{4})_{2}\mathbf{SiF}_{6}^{2}$	NH ₄ FeF ₄	FeF ₃	FeOF , Fe_2O_3
T, °C	25-140°C	220-250°C	300-350°C	>400°C

Рисунок 9 – Последовательность фазообразования при взаимодействии с NH₄HF₂

Другой предлагаемый в работе способ извлечения кремния – гидрохимический заключается в образовании растворимого комплекса $(NH_4)_2SiF_6$ и селективном его отделении от менее растворимых фторометаллатов аммония и простых фторидов/оксидов. Кинетические зависимости степени извлечения кремния из ХММС от концентрации раствора NH_4HF_2 при максимальной температуре ~90 °C и от температуры при средней концентрации реагента 10 масс. % приведены на рисунке 10.

Рисунок 10 – Зависимости степени извлечения SiO₂ от концентрации NH₄HF₂ при ~90 °C (а) и температуры 10 масс. % раствором NH₄HF₂ (б)

Увеличение до 30 масс. % концентрации NH_4HF_2 способствует растворению не менее 98 % SiO₂ уже за 3 ч с сохранением близких значений извлечения при 40 масс. % NH_4HF_2 и при увеличении времени обработки до 5-6 ч. Резкий рост извлечения за первый час и последующее замедление при всех температурах говорит о растворении кремния в первую очередь из наиболее доступных фаз. Замедление высвобождения кремния из его минералов связано с влиянием осложняющих процессов, в частности с растворением других компонентов и

появлением на поверхности минералов нерастворимых фаз, препятствующих проникновению реагента внутрь исходных частиц. Таким образом, скорость выхода на постоянную степень извлечения зависит от концентрации реагента, а затем от температуры.

Данные РФА (Рисунок 11) и химического анализа (Таблица 5) твердых фаз после обработки XMMC 30 масс. % раствором NH₄HF₂ при 90 °C в течение 2 ч подтверждают практически полное удаление кремния и образование в остатке простых и комплексных фторидов.

Рисунок 11 – РФА остатка XMMC после гидрохимической обработки 30 масс. % раствором NH₄HF₂, 2 ч, 90 °C

Таблица 5 – Результаты EDX-анализа остатков после обработки сырья раствором 30 масс. % NH₄HF₂ в течение 2 ч при 90 °C, масс. %

Сырье	F	Mg	Al	Si	Ca	Fe	Na	Ti
XMMC	42,8	12,3	7,1	<0,5	29,7	5,7	1,6	0,8
НКШ	39,9	0,9	6,5	<0,4	16,4	23,8	6,9	2,1
ВКШ	31,4	1,0	14,4	<0,4	22,8	6,4	4,7	5,7

Для изучения механизма вскрытия минералов при более медленном ведении процесса и с целью снижения расхода реагента получены кинетические данные по извлечению кремния из

ХММС 10 масс. % раствором NH_4HF_2 при температурах 40, 50, 70, 90 °C. Более высокие значения коэффициентов корреляции R^2 линейных анаморфоз кинетических кривых (Рисунок 12), описывающих растворение в модели «сжимающегося ядра», установлены при использовании уравнения Грея-Веддингтона (1) и логарифмического уравнения (2):

Рисунок 12 – Растворение кремния из частицы XMMC в модели «сжимающегося ядра» (а) и кинетические кривые извлечения кремния раствором 10 масс. % NH₄HF₂ в координатах уравнения Грея-Веддингтона (б) и логарифмического уравнения (в)

Первое уравнение показывает лимитирование химического взаимодействия на поверхности твердой частицы с уменьшением ее размера, а второе указывает на появление

диффузионных затруднений при растворении кремнезема в результате роста толщины слоя образующихся инертных продуктов, препятствующих проникновению реагента NH₄HF₂ Таким внутрь частицы. образом, вначале вышелачивание кремнезема определяется скоростью химической реакции растворения кремния из минералов, а постепенный рост тормозящего слоя инертных продуктов (CaF₂, MgF₂ и др.), через который в одном направлении

Таблица 6 – Кинетические параметры извлечения кремния из XMMC 10 масс. % р-ром NH₄HF₂

To made. 70 p pom runam 2								
Т, К	$k^{(1)}, 1/c$	$k^{(2)}, 1/c$						
313	$2,48 \cdot 10^{-6}$	$2,76 \cdot 10^{-5}$						
323	$5,25 \cdot 10^{-6}$	$5,\!68 \cdot 10^{-5}$						
343	$8,22 \cdot 10^{-6}$	$8,48 \cdot 10^{-5}$						
363	$6,06 \cdot 10^{-6}$	$5,93 \cdot 10^{-5}$						
\mathbb{R}^2	0,933	0,928						
E_a , кДж/моль	16,1	17,9						
n	0,40	0,37						

диффундирует жидкий реагент, а в противоположном направлении – жидкие и газообразные растворимые продукты реакции, сказывается на скорости процесса в дальнейшем.

Рассчитанные значения констант скорости растворения кремнезема и энергии активации гидрохимического фторирования XMMC 10 масс. % раствором NH_4HF_2 при различных температурах приведены в таблице 6. Невысокие величины (E_a) и дробные значения порядка реакции по реагенту (*n*) подтверждают смешанный механизм, а также одновременное протекание нескольких этапов реакций, в том числе реакции образования комплекса фторосиликата аммония. Таким образом, для интенсификации процесса необходимо вести выщелачивание при температуре не менее 70 °C, увеличить концентрацию регента до 20 масс. % и обеспечить отвод продуктов от поверхности реагирующих частиц.

Для оптимизации процесса растворения целевого компонента, возможности управления переменными параметрами и интерполяции экспериментальных данных было обучено 2 нейронных сети на двух различных тренировочных наборах: первый – при постоянной

концентрации 10 масс. % NH₄HF₂, а второй – при постоянной температуре ~90 °C. Использование алгоритмов машинного обучения определяет пространственную изменчивость растворимости и прогнозирование условий эксперимента при варьировании параметров (Рисунок 13). Тенденция увеличения степени извлечения кремния с увеличением продолжительности и температуры описывается сигмоидальной функцией. Моделирование подтвердило, что максимальная степень извлечения SiO₂ 10 масс. % раствором не превысит 70 % за 6 ч ведения процесса. Теоретически 100 % извлечение кремния возможно при выщелачивании кремнезема из XMMC раствором с концентрацией не менее 20 масс. % NH₄HF₂ при температуре не ниже 90 °C в течение не менее 3 ч.

Рисунок 13 – Прогнозируемые поверхности извлечения SiO₂ (α , доли) из XMMC: (a) – от температуры при 10 масс. % NH₄HF₂; (б) – от концентрации реагента при ~90 °C

Для синтеза аморфного кремнезема были использованы кремнефторидные растворы, полученные растворением возгонов $(NH_4)_2SiF_6$ фторирования техногенного сырья, а также фильтраты, отделенные от нерастворимых остатков после гидрохимической обработки сырья. Концентрацию варьировали от 5 до 75 г/л $(NH_4)_2SiF_6$, нейтрализацию для повышения pH от 1 до 9 проводили раствором 25 масс. % NH₄OH при температурах 25–50 °C по реакции (3):

$$(NH_4)_2 SiF_6 + 4NH_4 OH = SiO_2 \cdot H_2 O \downarrow + NH_3 + HF + 2H_2 O$$
(3)

Ha основе экспериментальных данных кремнийсодержащих твердых фаз в зависимости от исходной концентрации раствора (NH₄)₂SiF₆ и величины рН представлено (Рисунок 14). Показано, что из насыщенных растворов с концентрацией 65-75 г/л $(NH_4)_2SiF_6$ уже при pH=1–2 происходит выделение твердую фазу самого В гексафторосиликата аммония вследствие снижения его растворимости В присутствии NH₄F. разбавленных Нейтрализация растворов с концентрацией 30-60 г/л (NH₄)₂SiF₆ аммиаком до значений рН от 3 до 7,5 приводит к осаждению смеси (NH₄)₂SiF₆ и аморфного SiO₂. И только при

изменение

состава

прослежено

состава твердой фазы от рН и концентрации растворов (NH₄)₂SiF₆

разбавлении исходного раствора до концентрации менее $30 \text{ г/л} (\text{NH}_4)_2 \text{SiF}_6$ единственным продуктом нейтрализации при pH >7,5 становится кремнезем SiO₂.

Было проаннотировано изменение текстурных характеристик полученных твердых фаз от условий нейтрализации (Таблица 7). Обнаружено, что выделенный из насыщенного раствора комплексный фторид (NH₄)₂SiF₆ отличается более плотной структурой с величиной $S_{yg,nob.}$ =1,9 м²/г по сравнению с продуктом возгонки с $S_{yg,nob.}$ =5,16 м²/г и размером частиц d_{cp} =0,16 мкм. При этом присутствие в твердой фазе (NH₄)₂SiF₆ закономерно приводит к существенному ухудшению свойств кремнезема – снижению площади удельной поверхности и объема пор и увеличению размера частиц и плотности. Таким образом, прослежено влияние на состав и свойства твердой фазы как исходной концентрации кремнефторидного раствора, так и величины pH гидролиза. Кремнезем SiO₂ с высокой величиной S_{уд,nob.} = 370 м²/г получен нейтрализацией до pH=8 раствора ГФСА с концентрацией 5-20 г/л при последующей выдержке образовавшегося золя при перемешивании при комнатной температуре в течение 24 ч.

		• 1		1 , ,	
Состав твердой фазы	С(NH ₄) ₂ SiF ₆ , г/л	pН	d*, мкм	S _{уд} , м ² /г	ρ, г/см ³
$(NH_4)_2SiF_6$	70	1-2	14	1,9	2
SiO ₂ +(NH ₄) ₂ SiF ₆	32-62	3-7	3	61,6	1,72
SiO ₂	20-30	8-9	0,18	195,6	1,62
SiO_2	5-20	8-9	≤0,1	370	1,46

Таблица 7 – Состав и свойства продуктов нейтрализации растворов (NH₄)₂SiF₆

* По данным, полученным с использованием лазерного анализатора, Horiba Partica, LA-950.

Дополнительно варьировали скорость подачи аммиака, время выдержки для коагуляции и старения золя кремнезема с возможным улучшением фильтруемости осадка. Установлено, что снижение скорости подачи аммиака (независимо от способа перемешивания) способствует увеличению S_{уд.пов.} и снижению размера агломератов частиц (Таблица 8).

Вид	T °C	Время введения	τ' _{перемешивания} *,	$S_{yд.пов,}$	V _{пор} ,	S _{nop} ,
перемешивания	1, C	NH4OH, мин	Ч	M^2/Γ	см ³ /г	м ² /г
Ультразвуковое	25	2–3	2	129,6	0,003	5,8
Ультразвуковое	50	2–3	1	155,3	0,022	33,5
Магнитное	25	2–3	2	113,7	0,002	4,2
Магнитное	50	2–3	1	123,3	0,005	9,3
Магнитное	25	10–15	0	195,6	0,033	58,1
Магнитное	50	10–15	0	234,5	0,021	49,7

Таблица 8 – Влияние условий осаждения из раствора 10 г/л (NH₄)₂SiF₆ на свойства SiO₂

* Время выдержки при перемешивании после введения NH₄OH

Электронные-изображения образцов аморфного кремнезема на рисунке 15 показывают, что в результате нейтрализации получены наночастицы SiO₂ размером 10–30 нм формы близкой к сферической, которые образуют также практически сферические агломераты с размерами 1–5 мкм.

Для осаждения кремнезема были приготовлены растворы ГФСА из возгонов термического фторирования многокомпонентных систем, а также при гидрохимическом фторировании XMMC раствором 10 масс. % NH₄HF₂. В выбранных условиях для достижения наибольшей площади удельной поверхности были получены образцы аморфного кремнезема.

Рисунок 15 – СЭМ (а) и ПЭМ (б) изображения аморфного кремнезема, полученного из XMMC в режиме свободного осаждения

Результаты химического анализа в таблице 9 показывают, что в зависимости от состава исходного сырья небольшое количество примесей соединений кальция, железа, алюминия могут присутствовать в SiO₂. Полученный аморфный SiO₂ имеет пикнометрическую плотность 1,46–1,62 г/см³, размер частиц до 10–16 нм, по физико-химическим показателям соответствует нормам ГОСТ 18307-78 «Сажа белая».

Таким образом, была достигнута поставленная изучении цель при фазообразования оксидно-фторидных В кремнийсодержащих предложены системах условия селективного выделения аморфного кремнезема. Установлено, что для более богатого (XMMC) по кремнию сырья могут быть

Таблица 9 – Среднее содержание примесей
в образцах SiO ₂

b copusqui prog								
Исходное сырье	Элемент, масс. %							
	Fe	Al	Ca	Ti	Mg			
XMMC	0,07	0,1	0,2	0,1	0,08			
НКШ	4,0	0,3	0,3	0,4	0,02			
ВКШ	1,6	0,1	0,1	0,2	0,01			

использованы оба способа фторирования, а для сырья с меньшим содержанием SiO₂, в частности, гидрохимических шламов глиноземного производства, предпочтительным является твердофазный.

В главе 4 с использованием выделенного из многокомпонентных систем аморфного SiO₂, а также промежуточного продукта – кремнегеля, который может быть использован без отделения воды, составляющей 90-95% от массы, разработанные способы синтеза ряда функциональных веществ.

Разработаны условия синтеза силиката кальция β-CaSiO₃ со структурой волластонита путем сушки и последующей прокалки смеси влажного геля SiO₂ с активной известью CaO, взятых в соотношении (3–4):1. По результатам РФА (Рисунок 16) показано, что структура силиката кальция на фоне рентгеноаморфного гало проявляется уже после отжига при 600 °C в течение 2 ч. В области 850–1100 °C идет дальнейшая кристаллизация β-CaSiO₃ (PDF №84-0655, Wollastonite-2M). При этом происходит снижение площади удельной поверхности с 27,2 м²/г при 800 °C до 9,7 м²/г при 1000 °C с образованием оплавленных частиц β-CaSiO₃ (Рисунок 17). Избыточное количество кремнезема сначала кристаллизуется в форме α -SiO₂, а затем при охлаждении с 1100 °C – в фазе β-SiO₂. Предлагаемый способ позволит расширить ассортимент продукции, производимой при переработке техногенного сырья.

Рисунок 16 – РФА продуктов отжига смеси CaO/SiO₂

Рисунок 17 – СЭМ-изображения β-CaSiO₃ при 850 °С (а) и 1100 °С (б)

Силикат кобальта и алюминат кобальта в матрице SiO2

Путем пропитки кремнегеля растворами солей нитрата/формиата кобальта/алюминия для равномерного распределения фаз с последующим термическим отжигом получены CoAl₂O₄ и Co₂SiO₄ в матрице аморфного кремнезема. Формирование фаз методами РФА, TГ-ДСК и ПЭМ подтверждено на рисунках 18–20. Образование при 1000 °C силиката кобальта Co₂SiO₄, обладающего характерным фиолетовым оттенком, показано на рентгенограмме одновременно с кристаллизацией кристобалита и кварца из аморфного SiO₂. Оцененное из данных РФА содержание Co₂SiO₄ составило 40 масс.%.

Рисунок 18 – Дифрактограммы образцов $CoAl_2O_4/SiO_2$ (а) и Co_2SiO_4/SiO_2 (б), отоженных при разных температурах, фазы: $1 - \beta$ -SiO₂, $2 - Co_2SiO_4$, $3 - \alpha$ -SiO₂, $4 - Co_3O_4$, $5 - CoAl_2O_4$

Для образца, полученного из смеси формиатов алюминия и кобальта и кремнегеля после отжига при 1000 °C обнаружены широкие дифракционные максимумы, которые при 1300 °C существенно вырастают (Рисунок 18б). При этом усиливается насыщенность ярко-синего цвета продукта CoAl₂O₄/SiO₂, содержащего 43 масс. % CoAl₂O₄. Замечено, что в присутствии CoAl₂O₄ кристаллизация фазы β -SiO₂ из кремнезема происходит при значительно более высокой температуре (~1200 °C). По данным TГ-ДСК при образовании CoAl₂O₄ в матрице кремнезема SiO₂ сначала при 170 °C происходит обезвоживание, а затем около 320 °C с глубоким эндоэффектом разложение формиатов металлов (Рисунок 19). При температурах от 500 °C до 850 °C размытый эндоэффект отвечает за протяженное во времени восстановление ионов Co³⁺ до Co²⁺ при синтезе CoAl₂O₄. Более четко этот эффект с убылью веса ~3% около 850 °C проявляется на кривых предварительно отожженного при 700 °C образца, когда в системе еще

17

присутствуют ионы Co^{3+} . Таким образом, обнаружено, что формирование CoAl_2O_4 (PDF №82-2239, a = 8,09) в восстановительной атмосфере происходит на 100 °C ниже температуры синтеза шпинели из смеси гидроксидов металлов.

Рисунок 20 – HRTEM изображение CoAl₂O₄/ SiO₂, вставка – увеличение выделенной области с осью зоны (112)

ПЭМ-изображение $CoAl_2O_4/SiO_2$ на рисунке 20 показывает равномерное распределение в матрице аморфной фазы SiO₂ большого количества относящихся к фазе $CoAl_2O_4$ кристаллитов размером от 10 до 30 нм. Из HRTEM–изображений наблюдается контраст типа «cross-lattice fringe» с двумя пересекающимися плоскостями решетки с расстояниями 0,47 нм и 0,28 нм, также позволяя идентифицировать фазу $CoAl_2O_4$.

Благодаря сохранению высокой дисперсности используемого в качестве основы кремнезема эти составы будут перспективны в качестве исходных сырьевых компонентов цветных глазурей и красок, несущих равномерно распределенную в кремнеземсодержащем материале соответствующую цветовую фазу, которые после термической обработки приобретут свои функциональные свойства.

Гидроксосиликат кобальта в матрице аморфного кремнезема

Методом гидротермального синтеза с использованием выделенного SiO₂ и формиата кобальта (II) получены материалы, содержащие гидроксосиликат кобальта $Co_3(Si_2O_5)_2(OH)_2$ в матрице аморфного кремнезема (Рисунок 21). В синтезе образцов SiO₂/Co варьировали мольное отношение (MO) Co:Si = (0,001–0,5):1. Присутствие трех широких пиков на дифрактограмме образца с MO Co:Si = 0,5:1 (S4) свидетельствует об образовании фазы Co₃(Si₂O₅)₂(OH)₂. Появление среди почти сферических частиц аморфной фазы SiO₂ изогнутых ламелей, состоящих из упаковок слоев Co₃(Si₂O₅)₂(OH)₂ длинной 20–50 нм и толщиной ~5 нм, повторяющих форму этих ламелей, обнаружено на ПЭМ-изображении образца с MO Co:Si = 0,01:1 (Рисунок 22). При увеличении количества Co₃(Si₂O₅)₂(OH)₂ в образце с MO Co:Si = 0,5:1 (S4) упаковки состоят из 10-15 слоев. Валентное состояние Co²⁺ в тетраэдрической координации в соединении Co₃(Si₂O₅)₂(OH)₂ подтверждено методом РФЭС.

Оценка фотокаталитических свойств образцов SiO₂/Co, содержащих Co₃(Si₂O₅)₂(OH)₂, проведена в сравнении с механическими смесями оксидов при том же MO Co:Si и чистыми оксидами Co₃O₄, SiO₂ и TiO₂ в реакции окисления бензол–1,4–диола (гидрохинона, ГХ) при УФ-облучении. Обнаружено, что степень разложения ГХ в присутствии Co₃(Si₂O₅)₂(OH)₂ не является аддитивным свойством исходных компонентов. Фотоактивность продуктов ГТ-синтеза, содержащих Co₃(Si₂O₅)₂(OH)₂, выше, чем механических смесей оксидов при том же MO (рисунок 23). При этом установлено, что лучшую стабильность и меньшее снижение активности в 3-м цикле показывает образец с MO Co:Si=0,01:1. На основе кинетических кривых для реакции 1-го порядка рассчитаны значения констант скорости окисления ГХ и времени полупревращения (Таблица 10).

MO Co:Si	Синтез	$\mathbf{S}_{\mathrm{yd}}, \mathbf{M}^2/\Gamma$	$k_{\rm s} \times 10^5$, c ⁻¹	τ _{1/2} , ч	
0,5:1	MX	115,9	4,21	4,6	
0,01:1	MX	161,1	1,92	8,0	
0,5:1	ГТ	118,6	4,21	4,6	
0,01:1	ГТ	135,6	4,70	4,2	
0,001:1	ΓТ	189,0	4,28	4,6	
TiO ₂ (Degussa)	4,37	4,9		
Без катализат	opa	1,34	14,4		

Таблица 1	0 –	Свойства	и кинетические	параметр	ыф	отоокисления	гид	рохинона в	1-	ом цикле

Обнаружено, что окислительная способность ГТ-образцов, содержащих Co₃(Si₂O₅)₂(OH)₂, в условиях УФ-облучения сопоставима с воздействием известного фотокатализатора TiO₂ (Degussa). Невысокое содержание в наиболее перспективном образце с MO Co:Si=0,01:1 является положительным эффектом для снижения расхода дорогостоящего и токсичного кобальта при сохранении высокой площади удельной поверхности и фотоактивности.

ЗАКЛЮЧЕНИЕ

В настоящей работе термодинамически обоснованы и экспериментально изучены процессы фазообразования и разделения компонентов оксидно-фторидных силикатных систем, образующихся при воздействии гидрофторида аммония на техногенные отходы, с выделением высокодисперсного аморфного кремнезема. Результаты исследований и интерпретация данных дифференциально-термического и термогравиметрического анализа, рентгенографии, ИКспектроскопии, электронной микроскопии и химического анализа позволили установить последовательность фазообразования в многокомпонентных оксидных системах и выявить особенности поведения компонентов сложных минералов при термоактивации в присутствии гидрофторида аммония, а также изучить механизм и определить кинетические параметры гидрохимического выделения кремния в раствор в виде комплексного фторосиликата аммония. Выбранные условия термоактивированной сублимации или гидрохимического растворения комплексного фторосиликата аммония наиболее перспективно для низкожелезистых отходов – ХММС и ВКШ, которые в дальнейшем могут быть использованы при подготовке укрупненных испытаний технологии и для разработки аппаратурно-технологической схемы с учетом регенерации реагента. В целом результаты исследований по переработке техногенных отходов способствуют решению практических проблем нецелесообразного их складирования и накопления, в том числе с учетом воздействия на экологию, а в фундаментальном плане позволяют выяснить механизмы взаимного влияния компонентов в условиях превращений.

По результатам работы сделаны следующие выводы:

- Обоснованы способы выделения кремния из оксидно-фторидных многокомпонентных силикатных систем в виде (NH₄)₂SiF₆ путем сублимации и комплексования в растворах NH₄HF₂ с последующим получением аморфного SiO₂.
- Самопроизвольный характер реакций фторирования сложных оксидов: Ca₃Al₂O₆·6H₂O, NaAlSiO₄·H₂O, CaMgSi₂O₆ подтвердили термодинамическими расчетами. Вскрытие алюмосиликата натрия происходит благодаря высокой доступности ионов натрия в структуре слоистого цеолита с большой по абсолютной величине ΔG⁰₂₉₈= -815,2 кДж/моль.
- 3. Установлено, что присутствие соединений щелочных и щелочноземельных металлов снижает температуры формирования и разложения фтороаммонийных комплексов алюминия и железа (III) в составе техногенных отходов на 30-50 °C и приводит к образованию сложных фторидов. Прослежена и показана последовательность превращений компонентов при твердофазном фторировании многокомпонентных кремнийсодержащих систем в интервале температур 25-500 °C
- 4. Впервые изучена кинетика гидрохимического процесса растворения кремния растворами NH₄HF₂ из отходов обогащения титаномагнетитов. Показано, что механизм выщелачивания кремнезема смешанный, описывается моделью «сжимающегося ядра», лимитируется одновременно химическим взаимодействием и диффузионными процессами на поверхности взаимодействующей частицы. Кажущаяся энергия активации составила E_a⁽¹⁾ = 16,1 кДж/моль (по уравнению Грея-Веддингтона) и E_a⁽²⁾ = 17,9 кДж/моль (с учетом диффузионных ограничений).

- 5. Впервые из техногенного сырья медленной нейтрализацией до рН 8-9 растворов с концентрацией 5-20 г/л (NH₄)₂SiF₆ получен высокодисперсный аморфный SiO₂ (S_{уд.} =370 м²/г, чистота 98-99%). Полученный SiO₂ по текстурным характеристикам (плотность 1,46-1,62 г/см³, размер частиц 10-16 нм) соответствует марке коммерческой «белой сажи» по ГОСТ 18307-78.
- 6. Установлено, что для сырья с содержанием SiO₂ более 40% можно рекомендовать использовать, как твердофазный, так и гидрохимический способ фторирования, для сырья с меньшим содержанием SiO₂ предпочтительным является твердофазный способ.
- Предложены способы синтеза функциональных материалов Co₂SiO₄, CoAl₂O₄ (пигменты) и Co₃(Si₂O₅)₂(OH)₂ (фотокатализатор) на основе полученного аморфного SiO₂

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи:

1. **Медянкина И.С.** Кинетика выщелачивания кремнезема гидрофторидом аммония из железорудных хвостов обогащения / И.С. Медянкина, Л.А. Пасечник // Теоретические основы химической технологии. – 2024. – Т. 58. – № 1. – С. 62-67.

2. Svetlakova K.I. Synthesis and photocatalytic activity of the Co-containing materials based on amorphous SiO₂ / K.I. Svetlakova, **I.S. Mediankina**, L.A. Pasechnik, L.Yu. Buldakova, M.Yu. Yanchenko // Mendeleev Commun. – 2023. – N. 33. – P. 269-271.

3. **Medyankina I. S.** Hydrofluoride processing of tailings from wet magnetic separation of titanomagnetite to obtain amorphous silicon dioxide / I. S. Medyankina, L. A. Pasechnik // ChemChemTech. – 2023. – Vol. 66. – N. 2. – P. 70-77. – DOI: 10.6060/ivkkt.20236602.6706.

4. **Медянкина И.С.** Фтороаммонийная переработка техногенного сырья с получением функциональных материалов / И.С. Медянкина, Л.А. Пасечник // Труды Кольского научного центра РАН. Серия: Технические науки. – 2023. – № 1 (14). – С. 163-168.

5. **Медянкина И.С.** Формирование гидроксосиликата кобальта в матрице аморфного кремнезема / И. С. Медянкина, К. И. Светлакова, Л. А. Пасечник // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. – 2022. – № 14. – С. 800-810.

6. **Медянкина И.С.** Кинетика гидрохимического фторирования кремнийсодержащих отходов титаномагнетитовых руд / И.С. Медянкина, В.М. Скачков, Л.А. Пасечник // Физикохимические аспекты изучения кластеров, наноструктур и наноматериалов. – 2021. – № 13. – С. 900-909.

7. **Medyankina I.S.** Synthesis of nanosized silica from industrial waste and its characteristics / I.S. Medyankina, L.A. Pasechnik // AIP Conference Proceedings «VII International Young Researchers Conference – Physics, Technology». – 2313. – 2020. – P. 050020-1- 050020-6.

8. **Медянкина И.С.** Взаимодействие кальций и алюминий содержащих фаз красных шламов с гидрофторидом аммония / И.С. Медянкина, Л.А. Пасечник, В.М. Скачков, С.П. Яценко, В.Г. Бамбуров // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. – 2017. – № 9. – С. 307-316.

9. Пасечник Л.А. Отходы глиноземного производства – перспективное сырье для черной и цветной металлургии / Л.А. Пасечник, И.С. Медянкина, В.М. Скачков,

В.Т. Суриков, С.П. Яценко // Труды Кольского научного центра РАН. – 2018. – Т. 9. – № 2-2. – С. 884-889.

 Медянкина И.С. Особенности фторирования гематита в составе красного шлама / И.С. Медянкина, Л.А. Пасечник, Н.А. Сабирзянов, В.М. Скачков, С.П. Яценко // Перспективные материалы. – 2016. – № 4. – С. 67-72.

11. Пасечник Л.А. Комплексная переработка красного шлама фторидным методом / Л.А. Пасечник, **И.С. Медянкина**, В.М. Скачков, С.П. Яценко, Н.А. Сабирзянов // Труды Кольского научного центра РАН. – 2015. – № 5 (31). – С. 89-91.

Патенты:

12. Пат. 2763715 С1 Российская Федерация, МПК С22В 34/12, С01В 33/24. Способ переработки отходов титаномагнетитовой руды: № 2021115605: заявл. 01.06.2021: опубл. 30.12.2021 / Л.А. Пасечник, **И.С. Медянкина**, С.П. Яценко; заявитель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук. – 6 с.

13. Пат. 2784195 С1 Российская Федерация, МПК В01Ј 21/08, В01Ј 23/89, В01Ј 29/035. Фотокатализатор и способ его получения: № 2022122555: заявл. 22.08.2022: опубл. 23.11.2022 / Л.А. Пасечник, К.И. Светлакова, **И.С. Медянкина** [и др.]; заявитель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук. – 10 с.

14. Пат. 2804356 С1 Российская Федерация, МПК С01В 33/24, С01F 11/00. Способ получения силиката кальция: № 2023100875: заявл. 17.01.2023: опубл. 28.09.2023 / В.М. Скачков, И.С. Медянкина, А.А. Иошин; заявитель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук. – 7 с.

Благодарности

Автор выражает искреннюю благодарность своему научному руководителю к.х.н. Пасечник Л.А. за участие в обсуждении полученных результатов и помощь при оформлении диссертации; к.х.н. Скачкову Владимиру Михайловичу за неоценимую помощь при проведении отдельных экспериментальных исследований; к.х.н. Попову Илье Сергеевичу за помощь в математическом моделировании экспериментальных данных.

Автор признателен д.х.н. Красненко Татьяне Илларионовне и к.х.н. Леонидову Илье Аркадьевичу за рассмотрение работы и ценные рекомендации.