On cooling through the transition temperature Tc of a conventional superconductor, an energy gap develops as the normal-state charge carriers form Cooper pairs; these pairs form a phase-coherent condensate that exhibits the well-known signatures of superconductivity: zero resistivity and the expulsion of magnetic flux (the Meissner effect1). However, in many unconventional superconductors, the formation of the energy gap is not coincident with the formation of the phase-coherent superfluid. Instead, at temperatures above the critical temperature a range of unusual properties, collectively known as 'pseudogap phenomena', are observed2. Here we argue that a key pseudogap phenomenon—fluctuating superconductivity occurring substantially above the transition temperature—could be induced by the proximity of a Mott-insulating state. The Mott-insulating state in the -(BEDT-TTF)2X organic molecular metals3, 4, 5 can be tuned, without doping, through superconductivity into a normal metallic state as a function of the parameter t/U, where t is the tight-binding transfer integral characterizing the metallic bandwidth and U is the on-site Coulomb repulsion. By exploiting a particularly sensitive probe of superconducting fluctuations, the vortex-Nernst effect, we find that a fluctuating regime develops as t/U decreases and the role of Coulomb correlations increases.