РОССИЙСКАЯ АКАДЕМИЯ НАУК УРАЛЬСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА |
|
|
21.02.2008 | Карта сайта Language |
|
What attracted you to chemistry? What led you into magnetic materials? What types of magnetic systems are you working on? The other possibility is to start from molecules and functionalise them to make them suitable for creating a nanostructure. This is the 'bottom-up' approach. Organising these molecules in one, two or three dimensions is a challenge because it cannot be fully controlled. They can self-assemble spontaneously to give rise to a certain organisation. However, there is a relationship between the functionalisation of the molecules and the structure of the final materials you obtain, so if you design your system well, you can get the system you want. "Organising molecules in one, two or three dimensions is a challenge because it cannot be fully controlled." You can also impose organisation on a molecular system, playing, for example, with the nature of the surface on which the molecules are deposited. The supramolecular interactions of the molecules that dictate the self-assembly are now not the only important ones - you also have the interactions with the surface. We are just starting out with these systems. They are not very well known and that attracted me to work in this area. You are interested in multifunctional materials. Could you explain a little about these types of materials? Developing multifunctional materials is a big challenge in materials science and to obtain them by design is not easy. We are trying to design materials that show ferromagnetism and superconductivity and investigate the new physics behind this type of combination, which very few systems display. To reach this goal we are combining the appropriate molecular building blocks in solution to obtain a layered hybrid solid formed by an organic conductor and an inorganic magnet. We are also developing switchable magnetic materials. Materials in which, for example, you apply pressure, light or a change in temperature and the material changes its magnetic behaviour. This unique possibility, provided by the molecular chemistry, is very promising in view of the potential applications of these materials in molecular electronics or spintronics. We are always trying to see what the advantages of our molecular magnetic materials are compared to the classical ones. One advantage is the way we prepare them because we can take advantage of the molecular chemistry to design, for example, materials with combination of properties that are difficult or impossible to obtain using solid-state approaches. We also work at room temperature so the materials are cheap to prepare. What is the biggest challenge facing molecular magnetic chemistry? The biggest challenge is developing systems that are useful at high temperature; above 80 Kelvin using liquid nitrogen would be useful, but, obviously, above room temperature would be better and cheaper. Currently, our materials' properties are good but only at low temperatures, from 4 to 20 Kelvin. A challenge that I expect to be solved within the next few years is measuring the magnetic properties of one single molecule. We can measure the magnetism of nanoparticles but these are 1000 metal atoms in size. For molecular nanomagnets, we are talking about 10 atoms. What is the secret to being a successful scientist? What would you be if you weren't a scientist? An artist. I debated whether to become an artist or a scientist but if you are not an excellent painter and a genius of creativity, it is very difficult to succeed to a good level. Being a scientist is more of an intellectual activity, but artistic creativity is also essential and certainly contributes to scientific success. Layered ferromagnets hosting tetraalkylammonium-substituted nitronyl nitroxide free radicals Eugenio Coronado, Carlos Giménez-Saiz, Carlos J. Gómez-García, Francisco M. Romero and Ana Tarazón, J. Mater. Chem., 2008, 18, 929 DOI: 10.1039/b715739h Highly phosphorescent perfect green emitting iridium(III) complex for application in OLEDs
|
|
|
|
|
|||||||