19.11.2008
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 19.11.2008   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


19.11.2008

Overview No. 145 Metamagnetic transitions, phase coexistence and metastability in functional magnetic materials




This article is not included in your organization's subscription. However, you may be able to access this article under your organization's agreement with Elsevier.


S.B. Roya, P. Chaddaha, c, V.K. Pecharskyb and K.A. Gschneidner Jr.b, Corresponding Author Contact Information, E-mail The Corresponding Author






aMagnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India


bAmes Laboratory of the US Department of Energy and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-3020, USA


cUGC-DAE Consortium for Scientific Research, Indore 452001, India






Received 21 July 2008; 


accepted 21 August 2008. 


Available online 14 October 2008.






Abstract


Magnetic field-induced transitions (metamagnetic transitions) play an important role in defining functionality of various classes of magnetic materials. Rare earth manganites showing colossal magnetoresistance and Gd5(Ge1−xSix)4 alloys showing a giant magnetocaloric effect are typical examples that are of interest to the solid-state physics, chemistry and materials science communities. The key features of the metamagnetic transitions occurring in these systems are phase coexistence and metastability. This generality is highlighted by comparing experimental results characterizing three different classes of magnetic materials. A generalized framework of disorder-influenced first-order phase transition is introduced to understand the experimental data, which have considerable bearing on the functionality of these model materials.





Keywords: Magnetism; Phase coexistence; Phase transformations; Metamagnetism; Magnetostructural transformations





Article Outline



1. Introduction
2. Metamagnetic transition and phase coexistence in systems with a low-temperature antiferromagnetic state

2.1. Doped CeFe2 alloys – a test bed materials system
2.2. Manganese-oxide compounds showing CMR

3. Metamagnetic transition and phase coexistence in systems with low-temperature ferromagnetic state

3.1. Giant MCE material Gd5Ge4
3.2. La0.215Pr0.41Ca0.375MnO3 (LPCMO) and Al-doped Pr0.5Ca0.5MnO3 (PCMO)

4. Kinetic arrest of first-order antiferromagnetic (ferromagnetic) to ferromagnetic (antiferromagnetic) phase transition
5. Outlook
Acknowledgements
References





















































Corresponding Author Contact InformationCorresponding author. Tel.: +1 515 294 8220; fax: +1 515 294 9579.










Acta Materialia
Volume 56, Issue 20, December 2008, Pages 5895-5906


Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я © 2004-2024 ИХТТ УрО РАН
беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок