03.07.2009
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 03.07.2009   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


03.07.2009

Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics



Hugh W. Hillhousea, b, Corresponding Author Contact Information, E-mail The Corresponding Author and Matthew C. Beardb, Corresponding Author Contact Information, E-mail The Corresponding Author






aSchool of Chemical Engineering and the Energy Center, Purdue University, West Lafayette IN 47906, United States


bChemical and Biosciences Center, National Renewable Energy Laboratory, Golden CO 80401, United States






Received 13 April 2009; 


revised 5 May 2009; 


accepted 6 May 2009. 


Available online 13 May 2009.






Abstract


Recent advances in colloidal science are having a dramatic impact on the development of next generation low-cost and/or high-efficiency solar cells. Simple and safe solution phase syntheses that yield monodisperse, passivated, non-aggregated semiconductor nanocrystals of high optoelectronic quality have opened the door to several routes to new photovoltaic devices which are currently being explored. In one route, colloidal semiconductor nanocrystal “inks” are used primarily to lower the fabrication cost of the photoabsorbing layer of the solar cell. Nanocrystals are cast onto a substrate to form either an electronically coupled nanocrystal array or are sintered to form a bulk semiconductor layer such that the bandgap of either is optimized for the solar spectrum (1.0–1.6 eV if the photon to carrier quantum yields less than 100%). The sintered devices (and without special efforts, the nanocrystal array devices as well) are limited to power conversion efficiencies less than the Shockley–Queisser limit of 33.7% but may possibly be produced at a fraction of the manufacturing cost of an equivalent process that uses vacuum-based deposition for the absorber layer. However, some quantum confined nanocrystals display an electron-hole pair generation phenomena with greater than 100% quantum yield, called “multiple exciton generation” (MEG) or “carrier multiplication” (CM). These quantum dots are being used to develop solar cells that theoretically may exceed the Shockley–Queisser limit. The optimum bandgap for such photoabsorbers shifts to smaller energy (0.6–1.1 eV), and thus colloidal quantum dots of low bandgap materials such as PbS and PbSe have been the focus of research efforts, although multiple exciton generation has also been observed in several other systems including InAs and Si. This review focuses on the fundamental physics and chemistry of nanocrystal solar cells and on the device development efforts to utilize colloidal nanocrystals as the key component of the absorber layer in next generation solar cells. Development efforts are put into context on a quantitative and up-to-date map of solar cell cost and efficiency to clarify efforts and identify potential opportunities in light of technical limitations and recent advances in existing technology. Key nanocrystal/material selection issues are discussed, and finally, we present four grand challenges that must be addressed along the path to developing low-cost high-efficiency nanocrystal based solar cells.





Keywords: Nanocrystal; Solar; Photovoltaic; Sintered; Nanostructured; Economics; Quantum dot; MEG; Multiple exciton generation; Carrier multiplication; Shockley–Queisser; Schottky barrier; PbS; PbSe; CuInSe2; Energy; Grand challenge





Article Outline



1. Introduction
2. Selecting and synthesizing semiconductor nanocrystals for photovoltaic devices

2.1. Nanocrystal synthesis
2.2. Nanocrystal selection

3. Fundamental physics of nanocrystal solar cells

3.1. Coupling between nanocrystals
3.2. Doping and carrier concentration in nanocrystals and NC arrays
3.3. Electronic transport in NC arrays
3.4. Nanocrystal film formation
3.5. Devices based on nanocrystal array thin films

4. Third generation concepts and the state-of-the-art
5. Colloidal nanocrystal routes to second generation solar cells
6. Conclusions and grand challenges
Acknowledgements
References







































Corresponding Author Contact InformationCorresponding authors. School of Chemical Engineering and the Energy Center, Purdue University, West Lafayette IN 47906, United States.


Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я © 2004-2025 ИХТТ УрО РАН
беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок