22.07.2011
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 22.07.2011   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


22.07.2011





 

 






Quantum decoherence is a central concept in physics. Applications such as quantum information processing depend on understanding it; there are even fundamental theories proposed that go beyond quantum mechanics1, 2, 3, in which the breakdown of quantum theory would appear as an ‘intrinsic’ decoherence, mimicking the more familiar environmental decoherence processes4. Such applications cannot be optimized, and such theories cannot be tested, until we have a firm handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate and testable predictions for environmental decoherence in molecular-based quantum magnets5. Experiments on molecular magnets have successfully demonstrated quantum-coherent phenomena6, 7, 8 but the decoherence processes that ultimately limit such behaviour were not well constrained. For molecular magnets, theory predicts three principal contributions to environmental decoherence: from phonons, from nuclear spins and from intermolecular dipolar interactions. We use high magnetic fields on single crystals of Fe8 molecular magnets (in which the Fe ions are surrounded by organic ligands) to suppress dipolar and nuclear-spin decoherence. In these high-field experiments, we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally, and there are no other visible decoherence sources. In these high fields, we obtain a maximum decoherence quality-factor of 1.49×106; our investigation suggests that the environmental decoherence time can be extended up to about 500 microseconds, with a decoherence quality factor of ~6×107, by optimizing the temperature, magnetic field and nuclear isotopic concentrations.




Figures at a glance






  1. Figure 1: Typical ESR spectra, showing echo intensity as a function of transverse magnetic field,H.


    Data are shown for two different samples, at different temperatures and orientations of field, and at ωESR = 240GHz. a, Sample 1. Solid red line, , T = 1.58K; dashed blue line, , T = 1.67K. Top inset, sample dimensions are approximately z: x: y = 1,000: 700: 250µm. Lower left inset, the low-T spin structure of the Fe8 molecule. Lower right inset, the directions of the easy (z), hard (x) and intermediate (y) axes of an Fe8 molecule ( approximately gives the direction of the crystallographic vector a). b, Sample 2. Solid red line, , T = 1.7 K; dashed blue line, , T = 1.23 K. Top inset, sample dimensions are approximately z: x: y = 900: 800: 400µm. Bottom inset, tunnelling splitting, 2Δo, as a function of transverse field at (solid red line) and at (dashed blue line).





  2. Figure 2: Calculated contributions to the decoherence coming from the coupling to nuclear spins, phonons and magnons.


    a, The three individual contributions which sum to give the dimensionless decoherence rate γφ = /T2Δo, as a function of the qubit splitting in the case . b, The three corresponding contributions to the decoherence time, T2. In both panels: brown dashed lines, nuclear contribution (short-dashed brown lines are for the natural isotopic concentrations, long-dashed brown lines for the deuterated system); solid lines of different colours, magnon contributions at different temperatures (shown) from 0.1 to 1.6K; long-dashed lines of different colours, phonon contributions, shown for the same temperatures as in the magnon case.





  3. Figure 3: Measured and calculated decoherence times T2 in samples 1 and 2, as a function of temperature.


    a, Results for . Main panel: thin red line with diamonds, measured using sample 1, Hy = 9.845T; thin green line with circles, measured using sample 2, Hy = 9.875T; vertical and horizontal error bars, standard errors of T2 data fits and uncertainty in temperature (ΔT = ±0.05 K), respectively. Thick blue line, calculations including phonon and magnon contributions, Hy = 9.5T. Inset: partial contributions calculated for (solid line) from magnons (dashed line) and phonons (long-dashed line), together with the corresponding experimental results for the two samples (diamonds and circles). The scale on the right-hand side of the main panel indicates the decoherence Q-factor, Qφ = π/γφ = πT2Δo/ ; the right-hand scale on the inset shows γφ. b, As for a, but now for . The experimental curves were measured at Hx = 10.865T (sample 1) and Hx = 11.953T (sample 2). The theoretical curves are obtained at Hx = 11.3T.












Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev   honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2024 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок