Нано биотехСверхпрочный гибридный наноматериал поможет создать искусственные протезы
By: Свидиненко Юрий (Svidinenko) 2006.06.16
Диатомеи
Сверхпрочный гибридный наноматериал поможет создать искусственные протезы
Ученые из США смогли из двух природных материалов создать новый комбинированный наноматериал. Открытие сделали Дэвид Каплан и сего коллеги из Массачусетского Университета. Наноматериал, сочетающий гибкость паутины и жесткость кремнезема, найдет широкое применение в промышленности и медицине.
Гибридный нанокомпозит отличается высокой жесткостью по сравнению с другими полимерными материалами с использованием таких природных компонентов, как микрофибра и паутина.
Гидрат окиси кремния (или кремнезем) широко встречается в составе экзоскелетов одноклеточных простейших. Например, диатомей. Также он входит в состав скелета некоторых высших животных и даже растений. Шелк паука – материал на протеиновой основе с высокой гибкостью и упругостью.
Одна из особенностей синтеза нового материала то, что он получается методом «самосборки». Этот метод производства широко распространен среди ученых-нанотехнологов при синтезе материалов с экзотическими свойствами.
Рис. 1. СТМ изображение паучьего шелка до и после нанесения микрочастиц
Рис. 2. Диатомеи - одноклеточные создания с панцирем высокой прочности
Однако для получения гибрида ученым пришлось поработать над исходным природным материалом. Каплан и его коллеги с помощью генной инженерии синтезировали измененный шелк, формирующий не нити, а нанофибру и даже пластины. Далее, смешивая полученный «пластинчатый шелк» с био-кремнеземом (водным раствором микрочастиц диатомовых водорослей), оба материала «собирались» в тонкие листы сверхпрочного и гибкого гибрида.
Как выяснилось при изучении нового наноматериала под сканирующим электронным микроскопом, прочность ему добавляют эллиптические частицы кремнезема, присоединяющиеся к протеиновым нанофибрам шелка. При этом размер частиц довольно велик по меркам наномира – от 0.5 до 2 микрометров в диаметре. Но все же природные частицы больше – от 0.5 до 10 микрометров.
В ходе исследований оказалось, что можно контролировать размер микрочастиц кремнезема, изменяя прочность и гибкость гибридного композита. Используя это полезное свойство, Каплан и его коллеги надеются получить ряд наноматериалов с различными свойствами.
В частности, это открытие может привести к созданию нового класса биологических протезов, например, искусственных костей, биологически совместимых с тканями человека.
Теперь Каплан и его коллеги заняты изучением морфологии нового материала для того, чтобы вычислить оптимальное соотношение пропорции микрочастицы-нанофибра, что важно для синтеза материалов с заданной жесткостью и гибкостью.