15.06.2011
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 15.06.2011   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


15.06.2011

Catalysis for fluorination and trifluoromethylation





Journal name:

Nature

Volume:

473,

Pages:

470–477

Date published:

(26 May 2011)

DOI:

doi:10.1038/nature10108


Received


Accepted


Published online







Recent advances in catalysis have made the incorporation of fluorine into complex organic molecules easier than ever before, but selective, general and practical fluorination reactions remain sought after. Fluorination of molecules often imparts desirable properties, such as metabolic and thermal stability, and fluorinated molecules are therefore frequently used as pharmaceuticals or materials. But the formation of carbon−fluorine bonds in complex molecules is a significant challenge. Here we discuss reactions to make organofluorides that have emerged within the past few years and which exemplify how to overcome some of the intricate challenges associated with fluorination.





Figures at a glance


left


  1. Figure 1: Directed electrophilic palladium-catalysed Ar−F bond-forming reactions.


    a, Palladium-catalysed fluorination of organic molecules. Phenylpyridine derivatives (1) were fluorinated in the presence of 10 mol% of Pd(OAc)2 and the electrophilic fluorination reagent N-fluoropyridinium tetrafluoroborate (2) under microwave irradiation. b, A palladium-catalysed directed electrophilic fluorination of C–H bonds of N-benzyltriflamide derivatives (3) with the catalyst Pd(OTf)2·2H2O and the electrophilic fluorination reagent N-fluoro-2,4,6-trimethylpyridinium triflate (4). Ac, acetyl; Me, methyl; Et, ethyl; Tf, trifluoromethanesulphonyl.




  2. Figure 2: Nucleophilic palladium-catalysed Ar−F bond-forming reaction.


    a, The nucleophilic palladium-catalysed Ar−F bond-forming reaction of aryl triflates (5), with CsF as the fluorine source, the palladium(0) catalyst precursor [(cinnamyl)PdCl]2, and the sterically demanding ligand t-BuBrettPhos (6). b, The proposed mechanism for a comprises three elementary steps: oxidative addition, ligand exchange, and C−F reductive elimination. L, ligand; t-Bu, tert-butyl; i-Pr, iso-propyl; Boc, tert-butoxylcarbonyl; Ph, phenyl.




  3. Figure 3: Electrophilic silver-catalysed Ar−F bond-forming reaction.


    a, The silver-catalysed Ar−F bond-forming reaction. Aryl stannane derivatives (7) were fluorinated using 5mol% of Ag2O as catalyst and the electrophilic fluorination reagent F-TEDA-PF6 (8). The reaction was applied to late-stage fluorination of complex small molecules, including taxol (9), strychnine (10) and rifamycin (11) derivatives. b, The proposed mechanism for a includes three elementary steps: transmetallation, oxidation by an electrophilic fluorination reagent, and C−F reductive elimination. Bu, butyl.




  4. Figure 4: Transition-metal-catalysed Ar−CF3 bond-forming reactions.


    a, The copper-catalysed Ar−CF3 bond-forming reaction of aryl iodides (12) with 10mol% of CuI and 1,10-phenanthroline. b, The palladium-catalysed nucleophilic Ar−CF3 bond-forming reaction of aryl chlorides (14), with TESCF3 as the CF3 source, 6mol% of a palladium(0) precursor complex (15 or 16), 9mol% of the sterically demanding ligand BrettPhos (17), and KF. c, The palladium-catalysed directed electrophilic Ar−CF3 bond-forming reaction with 10mol% of Pd(OAc)2 and the electrophilic trifluoromethylation reagent S-(trifluoromethyl)dibenzothiophenium tetrafluoroborate (18). TES, triethylsilyl; dba, dibenzylideneacetone; Cy, cyclohexyl; Hex, hexyl; Bn, benzyl; TFA, trifluoroacetic acid.




  5. Figure 5: Catalytic enantioselective Csp3−F and Csp3−CF3 bond-forming reactions.


    a, Metal-catalysed enantioselective Csp3−F bond-forming reactions. Branched β-ketoesters were fluorinated using 5mol% of a Ti-TADDOL catalyst (19) and Selectfluor (20) or 2.5mol% of μ-hydroxo-palladium-BINAP complex (21) and N-fluorobenzenesulphonimide (22). b, Examples of organocatalytic enantioselective Csp3−F bond-forming reactions. Amino acid-derived organocatalysts (23 and 24) and N-fluorobenzenesulphonimide (22) were used to fluorinate α-unbranched aldehydes. Owing to the potentially facile racemization of α-fluoroaldehydes, the corresponding fluorohydrins (25) were isolated after reduction with NaBH4 in 54−96% yield and 91−99% enantiomeric excess (e.e.). c, Enantioselective Csp3−CF3 bond-forming reactions. The mechanism of the two presented reactions differ conceptually, but both afford α-trifluoromethylated aldehydes in good yield and high enantioselectivity either using hypervalent iodine 27 as the CF3 source and amine catalyst 26, or using trifluoroiodomethane as the CF3 source, 20mol% amine catalyst 28, 0.5mol% Ir catalyst 29 and light (from a fluorescent household light bulb). TMS, trimethylsilyl.






right




Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я © 2004-2025 ИХТТ УрО РАН
беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок