РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | |
 17.09.2011   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаци


17.09.2011

Geometrical enhancement of low-field magnetoresistance in silicon





Journal name:

Nature

Volume:

477,

Pages:

304–307

Date published:

(15 September 2011)

DOI:

doi:10.1038/nature10375


Received


Accepted


Published online







Inhomogeneity-induced magnetoresistance (IMR) reported in some non-magnetic semiconductors1, 2, 3, 4, 5, 6, 7, 8, particularly silicon1, 6, 7, 8, has generated considerable interest owing to the large magnitude of the effect and its linear field dependence (albeit at high magnetic fields). Various theories implicate9, 10, 11, 12, 13, 14, 15, 16, 17, 18 spatial variation of the carrier mobility as being responsible for IMR. Here we show that IMR in lightly doped silicon can be significantly enhanced through hole injection, and then tuned by an applied current to arise at low magnetic fields. In our devices, the ‘inhomogeneity’ is provided by the p–n boundary formed between regions where conduction is dominated by the minority and majority charge carriers (holes and electrons) respectively; application of a magnetic field distorts the current in the boundary region, resulting in large magnetoresistance. Because this is an intrinsically spatial effect, the geometry of the device can be used to enhance IMR further: we designed an IMR device whose room-temperature field sensitivity at low fields was greatly improved, with magnetoresistance reaching 10% at 0.07T and 100% at 0.2T, approaching the performance of commercial giant-magnetoresistance devices19, 20. The combination of high sensitivity to low magnetic fields and large high-field response should make this device concept attractive to the magnetic-field sensing industry. Moreover, because our device is based on a conventional silicon platform, it should be possible to integrate it with existing silicon devices and so aid the development of silicon-based magnetoelectronics.





Figures at a glance


left


  1. Figure 1: IV characteristics and Hall coefficient measured in In/SiO2/Si/SiO2/In at 300K.


    a, Measurement geometry. The width W is 3.0mm, the distance between the voltage electrodes L is 2.3mm and the lateral distance between the current injecting electrode and the Hall electrodes D is 3.2mm. b, The closed and open circles show the IV characteristics and Hall coefficient of sample 15, respectively. Insets show the locations of the p–n boundary.





  2. Figure 2: IV characteristics under magnetic field and the magnetoresistance of sample 20 at 300K.


    a, IV characteristics of sample 20 under different magnetic fields. The current range of the transition region shifted towards a lower-current region as the magnetic field increased. The inset shows the geometry of the sample. b, The magnetic field dependence of magnetoresistance in sample 20. Between 146μA and 226μA, a magnetoresistance transition occurred from normal to abnormal. Above the transition, abnormal magnetoresistance was also observed.





  3. Figure 3: Potential (colour scale) and current density (arrows) distributions and the effect of electrode geometry on magnetoresistance.


    The solid vertical lines in a and b show the p–n boundary. a, B = 0. The potential was symmetric about the x axis and current flowed along the x axis. b, B = μ−1. A positive Hall voltage appeared in the p region and a negative Hall voltage appeared in the n region. The boundary acted as a magnetic scattering resource. The current trajectory was distorted upward. c, As y0 increased, the apparent maximum magnetoresistance of sample 18 increased. d, As x0 decreased, the apparent maximum magnetoresistance of sample 26 increased. Insets in c and d show the placement of voltage contacts.





  4. Figure 4: Magnetoresistance of sample 40 at 300K.


ftp://server.ihim.uran.ru/localfiles/nature10375.pdf


 







Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev .  honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2019 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок