Abstract
Cu2ZnSnS4 (CZTS) nanocrystals, synthesized by a hot injection solution method, have been fabricated into thin films by dip-casting onto fluorine doped tin oxide (FTO) substrates. The photoresponse of the CZTS nanocrystal films was evaluated using absorbance measurements along with photoelectrochemical methods in aqueous electrolytes. Photoelectrochemical characterization revealed a p-type photoresponse when the films were illuminated in an aqueous Eu3+ redox electrolyte. The effects of CZTS stoichiometry, film thickness, and low-temperature annealing on the photocurrents from front and back illumination suggest that the minority carrier diffusion and recombination at the back contact (via reaction of photogenerated holes with Eu2+ produced from photoreduction by minority carriers) are the main loss mechanisms in the cell. Low-temperature annealing resulted in significant increases in the photocurrents for films made from both Zn-rich and stoichiometric CZTS nanocrystals.
Keywords:
Cu2ZnSnS4; thin films; solar cells; photoelectrochemistry; nano ink
Citing Articles
Citation data is made available by participants in CrossRef's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search in SciFinder.