РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | |
 24.12.2014   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаци


24.12.2014

 Nature Nanotechnology | Letter


Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor





Journal name:

Nature Nanotechnology

Year published:


DOI:

doi:10.1038/nnano.2014.288



Received


Accepted


Published online








Magnetic resonance imaging, with its ability to provide three-dimensional, elementally selective imaging without radiation damage, has had a revolutionary impact in many fields, especially medicine and the neurosciences. Although challenging, its extension to the nanometre scale could provide a powerful new tool for the nanosciences, especially if it can provide a means for non-destructively visualizing the full three-dimensional morphology of complex nanostructures, including biomolecules1. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques2. One successful example is magnetic resonance force microscopy3, 4, which has demonstrated three-dimensional imaging of proton NMR with resolution on the order of 10 nm, but with the requirement of operating at cryogenic temperatures5, 6. Nitrogen–vacancy (NV) centres in diamond offer an alternative detection strategy for nanoscale magnetic resonance imaging that is operable at room temperature7. Here, we demonstrate two-dimensional imaging of 1H NMR from a polymer test sample using a single NV centre in diamond as the sensor. The NV centre detects the oscillating magnetic field from precessing protons as the sample is scanned past the NV centre. A spatial resolution of ∼12 nm is shown, limited primarily by the scan resolution.




Figures









left


  1. Basic elements of the NMR imaging experiment.
    Figure 1: Basic elements of the NMR imaging experiment.

    a, A PMMA polymer sample attached to a quartz tuning fork is brought into contact with a diamond substrate containing a near-surface NV centre. The precessing protons in the sample are detected by the NV centre as the sample is scanned past it. The magnetic state of the NV centre is read out optically via spin-dependent fluorescence. b, Optical microscope image of the polymer sample. c, The sequence of microwave pulses manipulates the NV centre so that its precession phase is selectively perturbed by the oscillating proton magnetic field when the pulse periodicity matches one-half of the period of the proton field oscillations.




  2. NV coherence in the presence of nearby protons.
    Figure 2: NV coherence in the presence of nearby protons.

    A clear dip in coherence is observed when τ matches half the proton precession period. The decoherence is observed even when the polymer sample is retracted away from the NV centre by several micrometres, indicating the permanent presence of a proton contamination layer on the surface of the diamond, possibly adsorbed water or hydrocarbons. Analysis of the coherence dips suggests that the NV is ∼6.8 nm deep and the contamination layer is ∼1.6 nm thick.




  3. Representative line scans showing the NMR signal as a function of position.
    Figure 3: Representative line scans showing the NMR signal as a function of position.

    Each scan was taken at a different nominal y position, as indicated. A stepwise increase in NMR signal is seen as the sample is moved past the NV centre. The step height corresponds to a proton mean-square field of ∼(300 nT)2. The sharpest steps have transition widths of 12 nm, limited by the scan step size. Each vertical division represents a 25% change in NMR signal. For clarity, successive traces are displaced vertically by two divisions. Some variation in the x scan step size is evident due to adjustments made based on optical position measurements (see Methods).




  4. Two-dimensional NMR images.
    Figure 4: Two-dimensional NMR images.

    Results are from two different PMMA samples with two different NV centres. The height shown is proportional to the NMR signal s(x,y). Apparent roughness is primarily due to photon shot noise. a, Image based on 17 lines of scan data with 60 points in each scan line, including the data subset shown in Fig. 3. b, Image taken using both a different sample and a different NV centre (13 scan lines with 39 points per line).




  5. Calculated point spread function (PSF) for a 10-nm-deep NV.











Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev .  honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2019 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок