Abstract. Chiral inorganic nanomaterials hold significant promise for various applications, including enantioselective catalysis, polarization-controlling optical devices, metamaterials, and enantioselective molecular sensors. In our previous work, we presented a method for synthesizing chiral Au 432 helicoid III (Au helicoids) from peptides and amino acids, where helical gaps are intricately arranged with 432 symmetry within single cubic nanoparticles. In this study, we have achieved the fabrication of chiral silica molds through Au etching subsequent to the silica coating of Au helicoids. We demonstrate that these molds serve as geometrically confined reactors capable of producing chiral Ag, Pd, and Pt 432 helicoid III (Ag, Pd, and Pt helicoids). The morphology of the synthesized Ag, Pd, and Pt helicoids closely resembles that of the Au helicoids, exhibiting a superior g-factor compared to other reported chiral structures of each material. Notably, the Ag and Pd helicoids are found to be single-crystalline, with high-index planes exposed within the gaps. We believe that this silica mold-based approach can be generalized to synthesize chiral nanomaterials of various metal and even oxide materials.